COSC242: Tutorial Week 4 Proofs: Substitution and Iteration plus

1 Some worked answers

1. Suppose $\begin{array}{rcl} g(1) &=& 0\\ g(n) &=& g(n-1)+(n-1)\\ \end{array}$ Solve by iteration and prove your solution correct by induction.

Model Answer: Iteration and substitution

$$g(n) = g(n-1) + (n-1)$$

$$= g(n-2) + (n-1-1) + n - 1$$

$$= g(n-2) + 2n - 2 - 1$$

$$= g(n-3) + (n-2-1) + 2n - 2 - 1$$

$$= g(n-3) + 3n - 3 - 2 - 1$$

$$= g(n-4) + 4n - 4 - 3 - 2 - 1$$

$$= g(n-k) + kn - k - (k-1) - \dots - 1$$

$$= g(n-k) + kn - \frac{k(k+1)}{2}$$

Set $k = n - 1$

$$= g(1) + (n-1)n - \frac{(n-1)n}{2}$$

$$= \frac{(n-1)n}{2}$$

Induction proof Let $f(n) = \frac{(n-1)n}{2}$, and show that g(n) = f(n). *Proof.* Base case: g(1) = 0 = f(1) Inductive step: Assume that g(k) = f(k) and show that g(k+1) = f(k+1).

$$\begin{split} g(k+1) &= g(k) + (k+1-1) \\ &= f(k) + k \\ &= \frac{(k-1)k}{2} + k \\ &= \frac{(k-1)k + 2k}{2} \\ &= \frac{(k-1)k + 2k}{2} \\ &= \frac{k^2 - k + 2k}{2} \\ &= \frac{k^2 + k}{2} \\ &= \frac{k(k+1)}{2} \\ &= f(k+1) \end{split}$$

2. Suppose $\begin{array}{rcl} f(1) &=& 1\\ f(n) &=& n \cdot f(n-1) \end{array}$

Solve by iteration and prove your solution correct by induction.

Model Answer: Iteration and substitution

$$\begin{split} f(n) &= n \cdot f(n-1) \\ &= n \cdot (n-1) \cdot f(n-2) \\ &= n \cdot (n-1) \cdot (n-2) \cdot f(n-3) \\ &= n \cdot (n-1) \cdot (n-2) ... \cdot 2 \cdot 1 \\ &= n! \end{split}$$

Induction proof Let g(n) = n! and show that f(n) = g(n).

Proof. Base case: f(1) = 1 = g(1)Inductive step: Assume that f(k) = g(k) and show that f(k+1) = g(k+1).

$$f(k+1) = (k+1) \cdot f(k)$$

= $(k+1) \cdot g(k)$
= $(k+1) \cdot k!$
= $(k+1)!$
= $g(k+1)$

3. We have proven in lectures that Mergesort's time complexity is $n \log n + n$. Prove that $n \log n + n = O(n \log n)$.

Model Answer:

Proof. Show that $n \log n + n \leq cn \log n$ for $n \geq n_0$. Choose $c = 2, n_0 = 2$:

$$\begin{split} \text{LHS} &= n \log n + n \\ &\leq n \log n + n \log n \text{ if } n \geq 2 \\ &\leq 2n \log n \\ &\leq \text{RHS} \end{split}$$

4. Prove that $1^3 + 2^3 + \ldots + n^3 = [n(n+1)/2]^2$ for all $n \ge 0$.

Model Answer:

Proof. Base case: LHS = 0; $RHS = 0^2 = 0 = LHS$ Inductive step: Assume that $1^3 + 2^3 + \ldots + k^3 = [k(k+1)/2]^2$, show that $1^3 + 2^3 + \ldots + k^3 + (k+1)^3 = [(k+1)(k+2)/2]^2$.

$$LHS = [k(k+1)/2]^2 + (k+1)^3 \text{ using the assumption}$$

= $(k+1)^2 [k^2/2^2 + (k+1)]$ factor out $(k+1)^2$
= $(k+1)^2 [(k^2+4k+4)/4]$
= $(k+1)^2 [(k+2)^2/4]$
= $[(k+1)(k+2)/2]^2$
= RHS

5. Prove that $6^{n+2} + 7^{2n+1}$ is divisible by 43 for all $n \ge 0$.

Model Answer:

Proof. Base case: $LHS = 6^2 + 7 = 43$ which is divisible by 43.

Inductive step: Assume that $6^{k+2} + 7^{2k+1} = 43m$ for some *m*, show that $6^{k+1+2} + 7^{2k+1+2} = 43n$ for some *n*.

$$\begin{split} LHS &= 6^{k+1+2} + 7^{2k+1+2} \\ &= 6.6^{k+2} + 7^2.7^{2k+1} \text{ take a 6 out of the first term, and 7^2 out of the second} \\ &= 6.6^{k+2} + 49.7^{2k+1} \\ &= 6.6^{k+2} + 43.7^{2k+1} + 6.7^{2k+1} \text{ split the 49 into two parts.} \\ &= 6.(6^{k+2} + 7^{2k+1}) + 43.7^{2k+1} \text{ gather the multiples of 6.} \\ &= 6.m.43 + 43.7^{2k+1} \\ &= 43(6m + 7^{2k+1}) \\ &= 43n \text{ with } n = 6m + 7^{2k+1} \\ \text{ which is divisible by 43.} \end{split}$$

