
COSC201 Assignment 2: The shortest paths from
Kaitaia

Due: 11:59 p.m. Thursday, May 15, 2025

Introduction

Jareth was very impressed with your work on assignment 1, but now he wants to take
over New Zealand. To do that, he needs to be able to get around NZ as quickly as
possible. Therefore, he has contracted Daedalus to implement Dijkstra’s algorithm to
find the shortest path between any two locations in NZ. Daedalus has asked you to
implement Dijkstra’s algorithm for him.

You have been sub-contracted by Daedalus to implement Dijkstra’s algorithm and re-
port on the efficiency of the data structure to be used in the algorithm. They have pro-
vided three implementations of a priority queue that you must compare. The priority
queue implementations are:

• An unsorted array-based priority queue.

• A sorted array-based priority queue.

• A binary heap-based priority queue.

The implementation of the priority queue structures and the graph data structure are
already provided and you must use them. The existing code is available at https:
//altitude.otago.ac.nz/cosc201public/assignment2.

Code submission (5 points)

The code you submit will be a completion of the ShortestPath.java file. Details
of what code you need to complete are given in the file. You may use any resources
to implement Dijkstra’s algorithm, but it must use the provided priority queue imple-
mentations and satisfy all relevant interfaces. If you use any resources (e.g. you base
your code on an online description of Dijkstra’s algorithm), then you must refer to that

1

https://altitude.otago.ac.nz/cosc201public/assignment2
https://altitude.otago.ac.nz/cosc201public/assignment2


COSC 201 Assignment 2

resource both in your code and in your report. You should not copy code directly from
another source.

Your code should pass the test given in TestYourCode.java which is given in the A2
repo.

Written submission (5 points)

There are no formal requirements for the format of your submission, but presentation,
spelling and grammar are all important elements which will account for at least 40% of
the marks for this part of the assignment. Note that there are strict page limits for the
report - exceeding the page limit is an automatic 30% penalty for the report. For text, a
font size of at least 11 points for the main body is required.

If you are unsure how to structure your report, you might consider the following out-
line:

• Introduction: a brief overview of the problem and the purpose of the report.

• Algorithms and Experiments: a description of Dijkstra’s algorithm, the priority
queue implementations, the graph representation and the experiments you con-
ducted to determine their efficiency). You should also include what you expect
the results to be based on the theory of the algorithms (this is your hypothesis).

• Results: a summary of the results of the experiments presented in an appropriate
form, such as tables or graphs.

• Discussion and Conclusion: a discussion of the results and a conclusion based
on the results. Here you might want to compare the results of the experiments
with your hypothesis. If the results were not what you expected, you should
discuss why this might be the case. You should also discuss any limitations of
your experiments and suggest possible improvements.

If you refer to anything in your report that is not your own work, you should pro-
vide a citation using a standard citation format. This includes webpages, lecture notes,
textbooks and any other sources you might use.

For more writing tips, see the following link: https://www.otago.ac.nz/hedc/
students/digital#writing-and-language.

The page limit for a report without the bonus experiment is 3 sides of A4 including
all tables, figures, and references. If you choose to do the bonus experiment, the page
limit is 4 sides of A4.

https://www.otago.ac.nz/hedc/students/digital#writing-and-language
https://www.otago.ac.nz/hedc/students/digital#writing-and-language


COSC 201 Assignment 2

Bonus experiment (2 points)

You are not convinced that any of the provided priority queue implementations are
as good as they could be. You know that the Java libraries also provide a priority
queue implementation, so you decide to compare the performance of the provided
implementations with the Java implementation. You will need to implement a new
class called PQJava that implements the PQueue interface but makes use of the java
PriorityQueue implementation. PQJava is called an Adapter (a type of program-
ming pattern) because it adapts from an implementation to an interface. You will then
need to run the same experiments as you did for the other implementations and report
on the results.

Note that the bonus experiment is optional and it means the best mark you can get
is 12/10.

Academic Integrity

Everything you submit must be your own work. You may discuss the assignment in
general terms with other students, but you must not share code or written work. You
can use generative AI to help with proofreading, but you must not use it to generate
any part of your submission. You must not use any other sources in your submission
without citing them (both code and written work). If you are unsure about what consti-
tutes academic integrity, please ask. See https://cosc201.cspages.otago.ac.
nz/academic-integrity/ for more information.

https://cosc201.cspages.otago.ac.nz/academic-integrity/
https://cosc201.cspages.otago.ac.nz/academic-integrity/

	Introduction
	Code submission (5 points)
	Written submission (5 points)
	Bonus experiment (2 points)

	Academic Integrity

