
COSC201 Assignment 1: Forming a pool

“Short” exemplar solution

Introduction

As a collection of circular puddles grow and merge from randomly scattered centers,
how long does it take before they form one large pool? How many individual contacts
between two puddles create new pools as opposed to extending an existing one? This
report will address these problems, but also (and perhaps more importantly) consider
the efficiency of various possible ways of doing so.

Experimental operations and their time requirements

To conduct the experiment we need to: generate n points, generate the merge-ordering
list for these points, and then carry out union operations using a union-find implemen-
tation until only one group remains. We will consider the theoretical and observed time
complexities of each of these phases in turn.

Point generation

The cost, in theory, of generating n points is Θ(n). The points are generated in the
constructor of Puddles.java which assigns an array of n Point2D objects whose
construction requires constant time per object.

Observationally, the time required to construct n points was insignificant until n was
approximately 500,000. To collect observational data, 100 trials were performed and
the mean time computed for n from 500, 000 to 2, 500, 000 in steps of 500, 000. These
(shown below) show a clear linear trend.

1



COSC 201 Assignment 1

0

20

40

60

80

100

120

0 5 10 15 20 25

Ti
m

e 
in

 m
s

n in 100,000s

Point generation

Merge-order list

The theoretical complexity of generating the merge-order list is Θ(n2 log n). It is a list
of all the pairs of point indices, sorted by distance between them. As such, it constains
n(n−1)/2 elements (generated in nested for-loop). Sorting these elements adds an extra
factor of log n (technically, log n2 but this is 2 log n) to the cost.

Observational data shows a clear non-linear trend. It was collected for n from 500 to
1500 in steps of 100 (again reporting the mean time in milliseconds of 100 trials).

0

50

100

150

200

250

300

350

400

450

400 600 800 1000 1200 1400 1600

Ti
m

e 
in

 m
s

n

Merge-order list creation

Union operations

Union operations are carried out only to the last essential merge. There are n − 1 es-
sential merges but we do not know how many superfluous merges there will be. Let
t be the total number of merges carried out. Then, based on the underlying estimates
for time complexity of the various union-find implementations our theoretical time es-
timates would be: O(tn) for UF1 and UF2, and O(t log n) for UF3 and UF4. In fact, for
UF1 we can certainly expect O(n2) since a superfluous union takes constant time.

Observational data for UF1 does not show a clear non-linearity, but it’s not inconsistent
with the observations either. Note that the times are very small, so the data should be
viewed with some scepticism. In particular, the reduction from 500 to 600 is almost
certainly due to random changes. Observational data was collected for n from 500 to
1500 in steps of 100 (again reporting the mean time in milliseconds of 100 trials).



COSC 201 Assignment 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

400 600 800 1000 1200 1400 1600

Ti
m

e 
in

 m
s

n

Union-find operations

Comparing the union-find implementations

The intended method of comparing the union-find implementations was to consider
which value of n produced a wall-clock time of roughly one second for just the union-
find phase of the main experiment. However, the memory and time requirements of
the merge-order generation created a bottleneck that made this impossible. Therefore,
I considered a fixed value of n, close to that bottleneck, and compared the union-find
times at that common value. The value chosen was n = 5000 which led to a computa-
tion time of roughly 7 seconds for a full run (using any of the union-find implementa-
tions).

For each implementation, 100 trials were carried out with the union-find phase being
timed. The mean, minimum and maximum times (in microseconds to three significant
figures) are shown in the table below. Each trial had each of the four union find im-
plementations operating on the same instance of Puddles. It took a little less than an
hour to generate this data.

Implementation Mean Min Max
UF1 6470 6160 12700
UF2 6280 2410 23100
UF3 1420 680 4850
UF4 499000 387000 542000

The most striking part of this data is the poor performance of UF4 - presumably due to
the recursive implementation of the path-compression. Other than that, it does appear
that UF3 provides an improvement over UF1 and UF2, which are roughly the same as
one another.



COSC 201 Assignment 1

Counting superfluous merges

The main purpose of this experiment was to study how the ratio between the number
of superfluous merges and the number of essential merges changes as the number of
puddles increases. Our observations suggest that this ratio increases at a rate that ap-
pears to be logarithmic in the number of puddles. The relevant data are shown below,
with the usual 100 trials per size (reporting the mean). Because of the behaviour of the
growth, we chose n that were more tightly grouped for lesser values.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600 700 800 900 1000

Superfluous ratio

The ratios for individual runs of the experiment can vary quite widely, which accounts
for the lack of smoothness in the graph above. For example, at n = 100, I observed
values of the ratio ranging from 1.05 to 7.01.

Improving merge-order computations

In the sorting phase of computing the merge-ordering list every time a pair of points is
involved in a comparison the distance between the points is computed. This suggests
that we might be able to improve the performance by precomputing the distances. How
might we do this?

The most obvious approach would be to store a two-dimensional array of doubles
called d where d[i][j] is the distance between puddle i and puddle j. This can be
computed in time Θ(n2) using a simple nested for loop. Then, in the comparator, where
we currently have:

double dd = getPoint(o1[0]).distance2(getPoint(o1[1])) -
getPoint(o2[0]).distance2(getPoint(o2[1]));

we could simply use

double dd = d[o1[0]][o1[1]] - d[o2[0]][o2[1]];

instead.



COSC 201 Assignment 1

Conclusion

Except for the apparently poor performance of UF4, our observations of the time re-
quired for various parts of this experiment seem broadly in agreement with theory.
As to the actual results of the experiment, it seems that the ratio of superfluous to es-
sential merges grows slowly (apparently logarithmically) as the number of puddles
increases.


