
COSC201 Assignment 1: Forming a pool

Due: 11:59 p.m. Friday, March 31, 2023

Introduction

Imagine a large warehouse floor with water dripping from random points overhead.
As puddles form and grow larger, they merge one by one into pools until there is only
one giant pool. Assuming the puddles grow at a uniform rate, then we know the order
in which they will merge: the two closest centres first, then the next closest pair, and so
on. In this assignment you’ll investigate the following issue:

Up to the time when all the puddles have merged into a single pool one what pro-
portion of the merges are essential in the sense that the two centres involved are not
already part of the same larger puddle?

However, probably the more significant part of this assignment is to investigate the
efficiency of the various union-find implementations we’ve considered, and to learn
just how large a union-find instance can be handled smoothly on the hardware you
have available.

The experiment

Initialisation

A given number, n, of points are randomly distributed with x and y-coordinates be-
tween 0 and 1. The distance between each pair of points is computed and the pairs are
sorted in increasing order of distance between them.

1



COSC 201 Assignment 1

Computation

Using a union-find instance and the sorted list of pairs, a sequence of unions are per-
formed representing two puddles merging. Each union is either essential if the two
puddles were previously in two different pools, or superfluous if they already belonged
to the same pool. At the point where the number of pools reduces to one, so that all
further merges would be superfluous, we are interested in knowing what the ratio is
between the number of superfluous merges and essential merges.

For example, if there were 1001 puddles to begin with, then there are 1000 essential
merges that have to happen since each essential merge reduces the number of pools
by one. If, at the time the 1000th essential merge takes place, there had been 4500
superfluous merges then for that run of the experiment, the ratio we’re interested in
would be 4.5.

Ideally, we’d like to see how this ratio behaves over many runs of the experiment for
a given value of n and also how it changes when n changes. So, an experimental
framework that allows you to collect that data conveniently is what you need to put
together.

Raw materials

You will be provided with a number of Java classes. These include:

• All the union-find implementations we’ve looked at.

• A class Point2D.java that represents points in the plane.

• A class Puddles.java that can be used to represent scenarios of the type we’re
interested in.

– Its constructor just takes an integer parameter describing the number of pud-
dle centres and places them uniformly at random inside a square.

– A convenience method returns a list of pairs of centres, in increasing order
of distance between them.

Using these classes, you are asked to produce some more code and to conduct and
report on some experiments.



COSC 201 Assignment 1

Code submission (5 points)

The code you submit for this assignment will be a single class called PoolAnalyser.
Details to follow.

Written submission (10 points)

Please submit the answers to the following questions as a single PDF document There
are no formal requirements for the format of your submission, but presentation, spelling
and grammar are all important elements which will account for roughly 40% of the
marks for this part of the assignment.

The written answers to questions one and three could be a couple of paragraphs each
(or a bit longer) along with supporting data. A single paragraph plus data is enough
for question two, while a single paragraph plus possibly some pseudocode is enough
for question four.

1. An individual run of the experiment can be divided up into three phases:

• Generating the points,

• Generating the merge-ordering list,

• Carrying out the union operations until there is only one pool.

In theory, how should these operations scale with the number of points? Conduct
timing experiments to determine whether this actually seems to be the case. In
the event that bottlenecks arise that prevent you from running these experiments
over a wide range of point counts, report that rather than trying to over-interpret
the data.

2. Only the third part of the run depends on the union-find implementation used.
How does the choice of union-find implementation affect this run time? In partic-
ular, determine (on your hardware) what value of n produces a wall-clock time of
(roughly) 1 second for this part for each of the different union-find implementa-
tions. In the event that bottlenecks arise (typically, memory bottlenecks in build-
ing the merge order), report the time taken for each type of union-find implemen-
tation on the largest (common) size that you can run instead.

3. The result of an individual run of the experiment does not depend on which
union-find implementation is used. Using the most efficient one available (which,
having done the previous question, you should now know) describe how the ra-
tio between superfluous unions and essential unions behaves as the number of
pools changes.



COSC 201 Assignment 1

4. In creating the sorted list of pairs for input to union-find we could have chosen to
first compute the distance between every pair of points and stored it, then simply
accessed the precomputed distances for comparison purposes. How would you
suggest doing this in Java?


	Introduction
	The experiment
	Initialisation
	Computation

	Raw materials
	Code submission (5 points)
	Written submission (10 points)

