
COSC 201 O vs Θ 1

O vs Θ

Introduction

The notations O and Θ that we use to describe loosely the growth rate of certain expres-
sions are part of a family of notations developed initially for use in (analytic) number
theory and mathematical analysis. For our purposes though, we are only concerned
with their use in describing the time-complexity of algorithms (certainly the area in
which their use is now most widespread).

An excellent, though perhaps overly-detailed reference for this material is the wikipedia
page on O-notation and, in particular, the section on related notations and following
material.

Throughout this note you can assume that n stands for a positive integer, and that all the
expressions we are concerned with have non-negative values, at least for sufficiently
large values of n (otherwise, add some absolute value signs wherever they might be
needed).

Review of formal definitions

Let f(n) and g(n) stand for two expressions that have positive values depending on
some integer n. Usually, these will be mathematical expressions like g(n) = n3, but in
some applications f(n) in particular will describe the run-time of some algorithm – so
will be implicitly defined in terms of some sort of count of basic operations. That’s all
very vague (what exactly is a basic operation?), but fortunately the O and Θ notations
happen to work in such a way that the precise details don’t matter.

We say “f is big-oh of g” or “f of n is big-oh of g of n” and write:

f = O(g) or f(n) = O(g(n))

if there is some positive constant A such that for all sufficiently large n,

f(n) 6 A× g(n).

Aside: The use of the equals sign in f(n) = O(g(n)) is what’s called an abuse
of notation since we’re not actually saying f(n) is equal to something else, but
rather that the expression has some characteristic. But, it is widely used and
very convenient for various reasons, so we live with it.

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation#Related_asymptotic_notations


COSC 201 O vs Θ 2

We say “f is big-theta of g” or “f of n is big-theta of g of n” and write:

f = Θ(g) or f(n) = Θ(g(n))

if there are positive constants A and B such that for all sufficiently large n,

B × g(n) 6 f(n) 6 A× g(n).

Intuitive meaning and use

We use this type of notation most commonly when f is something quite complicated
(or perhaps not exactly known) and g is something simple. so

5 + 2n + 3n2 = Θ(n2)

is true and looks natural. On the other hand,

n2 = Θ(5 + 2n + 3n2)

is also true, but looks weird.

The point of both notations is to describe (or bound) the growth rate of f(n) in terms of
something familiar (like n2 or n log n).

Specifically, f = O(g) says we can stretch g by some constant factor and wind up above
f (eventually - but from then on always). So f grows no faster than g (up to constant
factors) but might grow more slowly. On the other hand, f = Θ(g) says that there
are two factors we can stretch g by that squeeze f between them – in effect, ignoring
constant factors, f and g grow at the same rate.

Differences

If I’m trying to sell you an algorithm and I say “the running time of this algorithm is
O(n2)” then I’m saying that the run time is bounded by some constant multiple of the
input size squared under all circumstances. Since n3 is bigger than n2 it would also be
true for me to say “the running time of this algorithm is O(n3)” but then you would be
less likely to buy – because you imagine that it might be slower. So, when we make O
statements we try to make the expression simple, but as small as possible.

What if I say “the running time of this algorithm is Θ(n2)”? Then I’m making a state-
ment that for all inputs the run time is bounded both above and below by some (differ-
ent) constant multiples of n2. In other words, the algorithm is quite rigid – its behaviour
is relatively unaffected by any special characteristics of the input.



COSC 201 O vs Θ 3

Consider the following two Java methods. The first takes an int[] as input and returns
the index in the array where the maximum value occurs. The second takes an int[]
and an int as input and returns an index in the array where the integer value occurs
(or −1 if it does not occur.)

public static int indexOfMax(int[] a) {
int result = 0;
int maxValue = a[0];
for(int i = 1; i < a.length; i++) {

if (a[i] > maxValue) { result = i; maxValue = a[i]; }
}
return result;

}

public static int search(int[] a, int v) {
for(int i = 0; i < a.length; i++) {

if (a[i] == v) { return i; }
}
return -1;

}

Aside: The indexOfMax method would fail (with an index out of bounds
exception) if we passed an array of length 0. Is that appropriate? My opinion
is, probably yes – if you’re looking for the index of the maximum value in an
array it feels like an exception if there are no places to look! On the other hand
search returns −1 for “not found” in that case. That’s appropriate too – if
you’re searching for something in an empty box, it’s perfectly appropriate to
say that it’s not there.

The indexOfMaxmethod always looks at every element of the array. It has to, because if
it skipped any, it might miss exactly the one where the maximum occurs! So, regardless
of the input array, the time taken will be proportional to the length (n) of the array, and
its performance is Θ(n).

On the other hand, the search method sometimes looks at every element of the array.
In particular it has to if the value being searched for doesn’t occur because if it skipped
any places, it might miss exactly the place where the value occurs. But, it can get
lucky – perhaps the value being searched for occurs in the very first place it looks. So,
sometimes it takes time proportional to n but sometimes it takes only constant time
(and it could take anything in between). All we can say is that its performance is O(n).
Now actually, this is better than Θ(n) (even though less precise) because it encapsulates
the same upper bound, but doesn’t imply a lower bound.



COSC 201 O vs Θ 4

In summary, we get Θ bounds when the difference between the work we must do and
the work we might do is a constant factor, but O bounds when the maximum time
required for the work we might have to do (the upper bound) is much larger (more
than a constant factor) than the work we must do.

Question: Suppose we knew in advance that we wanted to do these tasks
on sorted arrays (smallest to largest). Would that change the estimates above?
Would some other algorithms be more appropriate and what would their com-
plexities be?

Problems

1. Let f(n) = 5 + 2n + 3n2 and g(n) = n2. Confirm that f = Θ(g) and g = Θ(f) are
both true.

2. True or false:

• n2 = O(3n)

• 3n = O(n2)

• n2 = Θ(3n)

• 3n = Θ(n2)

• 3n + n2 = O(3n)

• 3n + n2 = O(n2)

• 3n + n2 = Θ(3n)

• 3n + n2 = Θ(n2)

• 2n = O(3n)

• 2n = Θ(3n)

• n = O(n log n)

• n = Θ(n log n)

3. Is it true in general that if f = Θ(g) then g = Θ(f)? If not, give a counterexample.
If so, explain why.

4. Both selection sort and insertion sort have run times bounded above by (a con-
stant multiple of) n2 and so are O(n2) algorithms. Do both have Θ(n2) run times?
Does either one?



COSC 201 O vs Θ 5

5. (A little bit subtle). Suppose that f1 = Θ(g) and f2 = O(g). Can we say that
f1 + f2 = O(g)? Can we say that f1 + f2 = Θ(g)?


	Introduction
	Review of formal definitions
	Intuitive meaning and use
	Differences
	Problems

