
Cosc 201
Algorithms and Data Structures

Lecture 24 (21/5/2025)
P and NP

Brendan McCane
brendan.mccane@otago.ac.nz

1

mailto:brendan.mccane@otago.ac.nz

Hard Problems

▶ Pretty much all the problems and algorithms we’ve covered so far we have
been able to solve in a polynomial number of steps (e.g. O(n2)).

▶ Are there problems that are harder than polynomial ones?
▶ There are problems that are definitely harder. For example:

▶ listing all possible subsets of a given set
▶ determining if there is a winning strategy in generalised games (chess, go etc)

requires exponential time. Generalised games have arbitrary sized boards.

2

Easy or Hard?

There are also a whole class of problems for which we don’t know if any efficient
algorithms exist. Here are some examples:
▶ finding a Hamilton cycle in a graph
▶ factoring an integer into a product of primes
▶ finding a tour of minimum distance that visits a set of cities once only. Called

the travelling salesman problem
▶ 0-1 knapsack problem1 and bin-packing
▶ timetabling

1Wait. What?
3

Hamilton cycle problem

Let G be an undirected graph. A
Hamilton cycle in G is a sequence of
adjacent vertices and distinct edges in
which every vertex of the graph appears
exactly once (except that the first and
last vertices are the same).

a b c

d e

f g h

a b

c

d e

4

Solving the Hamilton Cycle Problem

The simplest algorithm to solve the HCP is a brute force algorithm:
1. list every permutation of the n vertices in G
2. for each permutation, check whether G has edges connecting the

neighbouring vertices.
How many permutations of vertices are there?
What is the complexity of the check procedure in step 2?
What is the complexity of this algorithm?

5

The classes P and NP

P is the class of all problems solvable by algorithms that are O(nk).
That is, problems that are polynomial.

NP is the class of problems for which a proposed solution can be
checked in polynomial time. You might think that NP stands for “not
polynomial”, but it doesn’t. It actually stands for non-deterministic
polynomial.

6

P an NP

We know:
▶ P ⊆ NP
▶ HCP ∈ NP

What about:
▶ is HCP ∈ P?
▶ is P ⊂ NP?
▶ is P = NP?

7

HCP and P

How could we show that HCP ∈ P?
▶ Just provide an algorithm that solves HCP in polynomial time.
▶ No-one has been able to do that yet, so perhaps HCP ̸∈ P.
▶ How could we show that HCP ̸∈ P?
▶ We would have to show that no such algorithm exists that could run in

polynomial time. This is much harder to prove, and no-one has been able to
prove this either.

▶ In fact, it is one of the Millenium Prize problems worth US$1,000,000 if you
can solve it.

8

NP-complete problems

▶ HCP is one of several problems that have been shown to be NP-complete.
▶ A problem X is NP-complete if X ∈ NP and every other problem in NP can

be efficiently converted to an example of problem X, so that an algorithm
solving X can easily be modified to solve every other problem in NP.

▶ Now imagine if we could find an algorithm of polynomial complexity to solve
HCP.

▶ Then every problem in NP can be solved by this algorithm (after modifying it),
and so every problem in NP would have a polynomial time solution. Thus it
would follow that P = NP.

▶ But all problems in NP, like HCP, have stubbornly resisted all efforts to find
polynomial time solutions. By now, everyone strongly suspects that HCP and
the other NP-complete problems are too hard to be solved by algorithms that
are of less than exponential complexity.

9

Travelling Salesman Problem (TSP)

Given a set of cities, a salesman must
travel to each city once, starting and
ending at the same city. Which route is
the shortest?
E.g: starting at a, what is the shortest
tour?

�

�

��

�

��

�

��

�

��

��

��

��

��

��

��

11

Brute Force

Brute force uses essentially the same algorithm as HCP:
1. Generate all possible tours (Hamilton cycles)
2. Return the solution with shortest distance.

Complexity?

12

Dynamic programming

▶ We can do better by using a dynamic programming approach.
▶ Let G = (V ,E), and consider a start node s.
▶ Also, let’s define the minimum path between two nodes starting at a and

finishing at b and including all nodes in the set N as mtour (G,a,b,N).
▶ The minimum tour of G, starting at a and finishing at b, consists of the

following recurrence:

mtour (G,a,b,N) = min
n∈N−a

[d(a,n) + mtour (G,n,b,N − a)]

▶ If we start and finish at s, we need to solve mtour (G, s, s,V − s).
▶ A naive recursive implementation will give us the |V |! solution.
▶ If we memoise though, we can do a bit better.

13

Memoised complexity
▶ How big does our memo array need to be?
▶ Here’s the recurrence again:

mtour (G,a,b,N) = min
n∈N−a

[d(a,n) + mtour (G,n,b,N − a)]

▶ The only things that change in the recurrence are the start node and the set
of nodes to tour through.

▶ At the first level of recursion, we look at all subsets of size |V | − 1, then at the
second level all subsets of size |V | − 2 etc.

▶ The memo array needs to be big enough to fit all possible subsets of the
nodes in our graph, and that is 2|V |.

▶ The complexity of the dynamic programming solution is actually |V |22|V |.
▶ Well, that’s better than factorial, but it’s still pretty bad.
▶ No algorithm faster than O(2|V |) is known to exist.

14

