
Cosc 201
Algorithms and Data Structures

Lecture 23 (19/5/2025)
Dynamic Programming 2

Brendan McCane
brendan.mccane@otago.ac.nz

1

mailto:brendan.mccane@otago.ac.nz


Edit Distance

▶ The unix utility diff uses edit distance to find differences between two files (or
strings).

▶ Diff, or something like it, are used in all sorts of places, but most notably in
version control systems such as git.

▶ Edit distance can also be used to fix spelling errors.
▶ Edit distance is very similar to LCS.
▶ In LCS, we effectively only allow deletion from one string or the other in each

step.
▶ In edit distance, we try to transform one string into the other by allowing

operations: insert, delete, or substitute.
▶ For example, what are the fewest number of edits required to transform

"morena" into "morning"?

2



Edit distance recurrence

The recurrence for the edit distance is (transform X to Y):

dij =


di−1,j−1, if X [i] = Y [j]

min


di−1,j + 1, delete X [i]
di,j−1 + 1, insert Y [j]
di−1,j−1 + 1, substitute Y [j] for X [i]

, if X [i] ̸= Y [j]

where

d0,j = j : insert all characters up to Y [j]
and
di,0 = i : delete all characters up to X [i]

3



Naive algorithm

1: function EDITDISTANCE(X,Y)
2: if m=0 then return n
3: end if
4: if n=0 then return m
5: end if
6: if X[m]=Y[n] then
7: return EditDistance(X[1...m-1],Y[1...n-1])
8: end if
9: delxi = 1+EditDistance(X[1...m-1],Y)

10: insyj = 1+EditDistance(X,Y[1...n-1])
11: sub = 1+EditDistance(X[1...m-1],Y[1...n-1])
12: return min(delxi, insyj, sub)
13: end function

4



Memoised algorithm
1: initiallise memo as 2D array, set all distances to -1
2: function EDITDISTANCE(X,Y)
3: if m=0 then return n
4: end if
5: if n=0 then return m
6: end if
7: if memo[m,n]!=-1 then return memo[m,n]
8: end if
9: if X[m]=Y[n] then

10: memo[m,n] = EditDistance(X[1...m-1],Y[1...n-1])
11: else
12: delxi = 1+EditDistance(X[1...m-1],Y)
13: insyj = 1+EditDistance(X,Y[1...n-1])
14: sub = 1+EditDistance(X[1...m-1],Y[1...n-1])
15: memo[m,n] = min(delxi, insyj, sub)
16: end if
17: return memo[m,n]
18: end function

5



An example

Edit distance for this to ship:
s h i p

-1, -1, -1, -1, -1,
t -1, 1, r →ts 2, i →s r →th 3, i →sh r →ti 4, i →shi r →tp
h -1, 2, d →t r →hs 1, r →ts 2, r →ts i →i 3, r →ts i →i i →p
i -1, 3, d →th r →is 2, r →ts d →i 1, r →ts 2, r →ts i →p
s -1, 3, d →thi 3, r →ts d →i d →s 2, r →ts d →s 2, r →ts r →sp

For morena to morning:
i →n r →ei r →ag

6



Elements of Dynamic Programming

Problems that are amenable to solution by dynamic programming have the
following properties:

1. optimal substructure
2. overlapping subproblems.

8



Optimal substructure

9

▶ A problem exhibits optimal
substructure if an optimal
solution to a problem includes
within it, an optimal solution to a
subproblem.

▶ We’ve seen this with 0-1
knapsack, longest common
subsequence and edit distance
(but also shortest path and
Huffman coding).

▶ All of the DP problems look very
similar:

0-1 Knapsack:

V (0, w) = 0

V (k, 0) = 0

V (k, w) = V (k − 1, w) if wk > w

V (k, w) = max(V (k − 1, w), vk + V (k − 1, w − wk ))

LCS:

li,j =


0, if i = 0 or j = 0,
li−1,j−1 + 1, if xi = yj ,

max(li,j−1, li−1,j ), otherwise

Edit distance:

dij =


di−1,j−1, if X [i] = Y [j]

min


di−1,j + 1, delete X [i]
di,j−1 + 1, insert Y [j]
di−1,j−1 + 1, substitute Y [j] for X [i]

, if X [i] ̸= Y [j]



Subproblems are overlapping but independent

▶ Overlapping means that a naive recursive algorithm will solve the same
problem multiple times.

▶ Independent means that subproblems don’t share resources
▶ For example, if different subproblems needed to write to the same memory

location. Or different subproblems involved accessing a shared physical
resource (say a single robot arm).

10



What about greedy algorithms then?

First, let’s consider the difference between greedy algorithms and DP algorithms:
▶ Both: make a choice at each step
▶ DP: the choice depends on the solution to (more than one) subproblem
▶ Greedy: the choice can be made before solving subproblems
▶ Therefore, DP is inherently bottom-up (solve subproblems, make a choice),

whereas greedy is top-down (make a choice, solve subproblems)1.
▶ For example, in Dijkstra’s algorithm, we choose which vertex to expand (the

choice), then solve subproblems (the shortest path from that vertex).
▶ Divide-and-conquer algorithms are also similar to greedy algorithms. For

example, in quicksort, we make a choice (choose the pivot), then solve
subproblems (sort the sublists).

1Well, not all greedy algorithms are top-down. E.g. Huffman’s algorithm is bottom-up
11



When greedy algorithms are optimal

▶ Optimization problems for which greedy solutions are optimal, have some
different properties compared to problems for which DP solutions are optimal.

▶ These include:
1. There is only one subproblem or only one subproblem is non-empty
2. We don’t need to solve the subproblems before making a choice.

▶ Fractional knapsack fits both of these criteria.
▶ Shortest path fits the second criteria.

12



Next time ...

▶ There are many problems that cannot (yet) be efficiently solved
▶ Many of them are in a class of problems called NP
▶ All of the problems we’ve looked at so far are in the class P
▶ We’ll look at these two classes next.

13


