Cosc 201
Algorithms and Data Structures
Lecture 23 (19/5/2025)
Dynamic Programming 2

Brendan McCane
brendan.mccane@otago.ac.nz

UNIVERSITY

OTAGO

NEW ZEALAND

mailto:brendan.mccane@otago.ac.nz

Edit Distance

>

The unix utility diff uses edit distance to find differences between two files (or
strings).

Diff, or something like it, are used in all sorts of places, but most notably in
version control systems such as git.

Edit distance can also be used to fix spelling errors.

Edit distance is very similar to LCS.

In LCS, we effectively only allow deletion from one string or the other in each
step.

In edit distance, we try to transform one string into the other by allowing
operations: insert, delete, or substitute.

For example, what are the fewest number of edits required to transform
"morena" into "morning"?

Edit distance recurrence

The recurrence for the edit distance is (transform X to Y):

A1, it X[i] = Y
o — di—qj+1, delete X|i]
P mind dijq+1, insert Y[j] . X # Y]

di—1j-1+ 1, substitute Y{j] for X[i]
where

doj = j : insert all characters up to Y/[j]
and
dio = i : delete all characters up to X[

Naive algorithm

1:
2
3
4:
5:
6
7
8

9:
10:
11:
12:

function EDITDISTANCE(X,Y)

if m=0 then return n
end if
if n=0 then return m
end if
if X[m]=Y[n] then
return EditDistance(X[1...m-1],Y[1...n-1])
end if
delxi = 1+EditDistance(X[1...m-1],Y)
insyj = 1+EditDistance(X,Y[1...n-1])
sub = 1+EditDistance(X[1...m-1],Y[1...n-1])
return min(delxi, insyj, sub)

13: end function

Memoised algorithm

1: initiallise memo as 2D array, set all distances to -1
2: function EDITDISTANCE(X,Y)
3: if m=0 then return n

4: end if

5: if n=0 then return m

6: end if

7: if memo[m,n]!=-1 then return memo[m,n]

8: end if

9: if X[m]=Y[n] then

10: memo[m,n] = EditDistance(X[1...m-1],Y[1...n-1])
11: else

12: delxi = 1+EditDistance(X[1...m-11,Y)

13: insyj = 1+EditDistance(X,Y[1...n-1])

14: sub = 1+EditDistance(X[1...m-1],Y[1...n-1])
15: memo[m,n] = min(delxi, insyj, sub)

16: end if

17: return memo[m,n]

18: end function

An example

Edit distance for this to ship:

S h [p
-1, -1, -1, -1, -1,
t] -1, 1, r —ts 2,i —sr —th 3, i —sh r —ti 4, —shir —tp
h|-1,| 2,d—tr—hs 1, r —ts 2,r>tsi—i | 3, r—tsi—ii—p
i|-1,|3,d—thr—is 2, r —»ts d —i 1, r —ts 2,r —tsi—p
s | -1, 3, d —thi 3,rotsd—id—s |2, r—>tsd—s | 2,r —tsr—sp

For morena to morning:
i —nr—eir—ag

Elements of Dynamic Programming

Problems that are amenable to solution by dynamic programming have the
following properties:

1. optimal substructure
2. overlapping subproblems.

Optimal substructure

» A problem exhibits optimal
substructure if an optimal
solution to a problem includes
within it, an optimal solution to a
subproblem.

» We've seen this with 0-1
knapsack, longest common
subsequence and edit distance
(but also shortest path and
Huffman coding).

» All of the DP problems look very
similar:

0-1 Knapsack:

V(,w) =0
V(k,0) =0
V(k,w) = V(k =1, w)ifw, >w
V(k,w) = max(V(k — 1, w), v + V(k — 1, w — wy))
LCS:
0, ifi=0o0rj=0,
lij=19qli-1j-1+1, it i =y,
max(lj j_1,li—1,j), otherwise
Edit distance:
dim1,j—1 itX[1 =Yl
d = diq;+1, delete X[/]
Y Y min$di g+ 1, insert Y[j] L if X[# Y
di_y,j—1 +1, substitute Y[j] for X[i]

Subproblems are overlapping but independent

» Overlapping means that a naive recursive algorithm will solve the same
problem multiple times.

» Independent means that subproblems don’t share resources

» For example, if different subproblems needed to write to the same memory
location. Or different subproblems involved accessing a shared physical
resource (say a single robot arm).

What about greedy algorithms then?

First, let's consider the difference between greedy algorithms and DP algorithms:

>

>
>
>

v

Both: make a choice at each step
DP: the choice depends on the solution to (more than one) subproblem
Greedy: the choice can be made before solving subproblems

Therefore, DP is inherently bottom-up (solve subproblems, make a choice),
whereas greedy is top-down (make a choice, solve subproblems)’.

For example, in Dijkstra’s algorithm, we choose which vertex to expand (the
choice), then solve subproblems (the shortest path from that vertex).
Divide-and-conquer algorithms are also similar to greedy algorithms. For
example, in quicksort, we make a choice (choose the pivot), then solve
subproblems (sort the sublists).

"Well, not all greedy algorithms are top-down. E.g. Huffman’s algorithm is bottom-up

When greedy algorithms are optimal

» Optimization problems for which greedy solutions are optimal, have some

different properties compared to problems for which DP solutions are optimal.

» These include:

1. There is only one subproblem or only one subproblem is non-empty
2. We don’t need to solve the subproblems before making a choice.

» Fractional knapsack fits both of these criteria.
» Shortest path fits the second criteria.

Next time ...

» There are many problems that cannot (yet) be efficiently solved
» Many of them are in a class of problems called NP

» All of the problems we’ve looked at so far are in the class P

» We'll look at these two classes next.

