
Cosc 201
Algorithms and Data Structures

Lecture 20 (7/5/2025)
Greedy Algorithms

Brendan McCane
brendan.mccane@gmail.com

1

mailto:brendan.mccane@gmail.com


Types of algorithms

▶ So far, we have seen these algorithms:
▶ Merge sort (and quicksort)
▶ Graph algorithms (breadth-first traversal, depth-first traversal)
▶ Graph path algorithms (Dijkstra’s algorithm, Prim’s algorithm)
▶ Tree algorithms (preorder, inorder, postorder, insert, delete, rotate)

▶ This is just a list of algorithms.
▶ It would be useful to characterise algorithms and problems into types.
▶ This might give us some hints about the sort of tools we can bring to bear

when solving a problem.

2



Types of algorithms

Broadly, so far we have:
▶ Traversal algorithms (almost always O(n)). Can be recursive, or use a queue

or a stack.
▶ Divide-and-conquer algorithms:

▶ e.g. mergesort, quicksort
▶ Often O(n log n) but not always.
▶ Useful if we can split the problem into two equal parts and solve those parts

independently, then merge the results.
▶ Greedy algorithms:

▶ characterised by choosing the current best option to explore.
▶ Dijkstra’s algorithm and Prim’s algorithm are two examples.
▶ Often use a priority queue.

3



Compression

▶ Let’s say we have the string "aaaabbcd" which we want to encode into the
smallest number of bits.

▶ There are four different characters, so I might choose a→ 00, b → 01 etc.
▶ There are 8 character in total, so that takes 16 bits.
▶ Can we do better?
▶ Hint: use variable length codes.

4



Huffman coding

▶ Well, we could choose a→ 0, b → 10, c → 110 and d → 111.
▶ The string "aaaabbcd" can then be represented as "00001010110111". Which

is only 14 bits.
▶ This is the best we can do for this string and is called a Huffman code.
▶ Why can’t we use c → 11, b → 110 instead?
▶ That would only use 13 bits.
▶ The coding then would be "0000101011110".
▶ The resulting coding is ambiguous - consider the last 3 bits. Should that be a

"d" or a "ca"?
▶ For variable-length codes, we must use no-prefix codes where no character

encoding is a prefix of any other code.
▶ Confusingly, these sorts of codes are called prefix codes.

5



Huffman algorithm

▶ Huffman codes can be constructed in a greedy way. We need a min-priority
queue and a binary tree.

▶ We also need to know the frequencies of each of the characters in the
message.

▶ The basic algorithm is as follows:
1. Create a leaf node for each character and its frequency, and insert all the nodes

into a min-priority queue.
2. While there is more than one node in the queue:

2.1 Remove the two nodes of lowest frequency from the queue.
2.2 Create a new internal node with these two nodes as children. The frequency of the

new node is the sum of the frequencies of the two nodes.
2.3 Insert the new node back into the queue.

3. The remaining node is the root of the Huffman tree.
4. Assign binary codes to each character by traversing the tree. Assign 0 to the left

edge and 1 to the right edge.

6



Huffman example

7

Let’s run the algorithm on with frequencies (a,4), (b,2), (c,1), (d ,1). The
priority queue is on the left, and the tree is on the right.

Q: [(d,1), (c,1), (b,2), (a,4)] Tree empty.



Huffman example

8

Merge c and d, and insert back into Q

Q: [(cd,2), (b,2), (a,4)]
cd,2

d, 1

0

c,1

1



Huffman example

9

Merge cd and b, and insert back into Q

Q: [(cdb,4), (a,4)]
bcd,4

b,2

0

cd,2

c,1

0

d,1

1

1



Huffman example

10

Merge bcd and a, and insert back into Q

Q: [(bcdb,8)]

abcd,8

a, 4

0

bcd,4

b,2

0

cd,2

c,1

0

d,1

1

1

1



Huffman coding discussion

▶ Is quite widely used and is optimal if codes are constrained to an integer
number of bits.

▶ Arithmetic coding assigns codes based on fractions.
▶ Other codes use the context probabilities to encode symbols (e.g. the most

likely next symbol given the current symbol).
▶ For one-off codes, you have to also transmit the character codes. This is

usually only a small addition compared to the size of the message, but is still
an extra cost.

▶ Compression ratios of 1:2 and 1:3 are common.

11



Knapsack problems

Consider now a totally different kind of optimisation problem.
▶ Suppose we are given a set S = {s1, s2, ..., sn} where each item si has a

positive benefit (or value) vi and has a weight (or cost) wi . Take vi and wi to
be integers.

▶ Suppose we want to choose a maximum-benefit subset that doesn’t exceed a
given weight wmax (like a thief who wants to load up his knapsack with
valuables but can’t carry more than W kilograms, and wants to know which
items to pack in).

▶ If we are restricted to entirely accepting or rejecting each item, we have the
0-1 Knapsack Problem. (Think of the thief loading up gold bars of various
weights.)

▶ If we are allowed to take fractions of items, we have the Fractional Knapsack
Problem. (Think of bags of gold dust instead of solid bars of gold.)

13



Fractional knapsack greedy algorithm

1: procedure FRACKNAP(S,V ,W ,wmax)
2: Initiallise priority queue Q
3: for each si ∈ S do
4: pi =

vi
wi

▷ pi is normalised value
5: Q.enqueue(si ) using pi as priority.
6: end for
7: current_weight← 0
8: set knapsack to empty
9: while current_weight < wmax do

10: sk ← Q.dequeue()
11: xk ← min(wk ,wmax − current_weight)
12: current_weight← current_weight +xk
13: add xk

wk
of sk to knapsack

14: end while
15: end procedure

14



0-1 Knapsack problem
Let’s try the greedy algorithm on the 0-1 knapsack problem.

▶ In this version we have to put either all of an item, or none of an item in the
knapsack.

▶ What is the greedy solution for the above problem? What is the optimal
solution?

▶ What about this problem:

W = [20,30,10,5,15,25,3,17,22,31]
V = [100,120,60,40,20,45,23,72,102,31]

Wmax = 50.

15



Solving the 0-1 knapsack problem

Given: a set S = {s1, s2, ..., sn} where each item si has a positive benefit (or
value) vi and has a weight (or cost) wi . Take vi and wi to be integers. A maximum
total weight, wmax.
Required: to choose a subset of S such that the total weight does not exceed
wmax and the sum of the values vi is maximal.
Let V be a function returning the maximum value possible considering the first k
items in S (call those k items, Sk ), and available weight w .
If k ∈ Sk and we remove k from Sk (call it Sk−1), then the resulting set must be the
optimum for the problem with a maximum total weight of w − wk . Why?

16



Recursive non-greedy solution

We are left with the following observations:
▶ If there are no items in our set (S0), then the maximum value is 0.
▶ If there is no space in our knapsack, then the maximum value is 0
▶ If the k th item can’t fit in the knapsack, then the maximum is the same as the

maximum for k − 1 items.
▶ Otherwise, the maximum is either:

▶ the maximum without the k th item in the optimal set, in which case we have a
new problem with k − 1 items and maximum weight w .

▶ the maximum with the k th item in the optimal set, in which case we have a new
problem with k − 1 items and maximum weight w − wk .

17



Recursive non-greedy solution

So we can define our optimum V (k ,w) recursively as:

V (0,w) = 0
V (k ,0) = 0
V (k ,w) = V (k − 1,w) if wk > w
V (k ,w) = max(V (k − 1,w), vk + V (k − 1,w − wk ))

18



The Algorithm

1: function RECURSIVEKNAPSACK(k, W, V, wmax)
2: if k==0 or wmax ≤ 0 then return 0, ϕ
3: end if
4: if W[k]>wmax then ▷ Can’t fit k into knapsack
5: return RecursiveKnapsack(k-1,W,V,wmax)
6: end if ▷ Check the maximum value without k
7: v1, items_not← RecursiveKnapsack(k-1,W,V,wmax)
8: ▷ Check the maximum value with k
9: v2, items_do← RecursiveKnapsack(k-1,W,V,wmax-W[k])

10: v2← v2 + V[k] ▷ add the value of item k
11: items_do.add(k) ▷ add item k to the list
12: if v2>v1 then return v2, items_do ▷ do use k
13: else return v1, items_not ▷ don’t use k
14: end if
15: end function

What is the complexity of this function?
19


