Cosc 201
Algorithms and Data Structures
Lecture 17 (28/4/2025)
Hashing

Brendan McCane
brendan.mccane@otago.ac.nz
And
Michael Albert

OTAGO

Te Wi, s
NE D

mailto:brendan.mccane@otago.ac.nz

Maps and sets revisited

>

>

>

In computer science, a map consists of a set of keys, each of which has an
associated value.

So sets are a prerequisite, but also any map can be used to store a set simply
by ignoring the values for each key (or, e.g., setting it to nul11)
The fundamental map operations are usually considered to be:

> put(k,v): add the mapping from k to v either by adding k if it's not already

present, or by changing the associated value,

> get(k): return the value associated to k if k is present, and

> remove(k): remove the key k (and any associated value).
We could implement a set or Map implementation using BSTs where the cost
of each operation is O(log n).

But, this requires an underlying order on keys (and presupposes the order is
relevant for e.g., inorder traversal).

What if we don’t care about an order. Can we get down to (or close to) O(1)?
Worst-case? Amortised case?

A perfect world . ..
Let’s dream. Keys come from a class K, values from a class v
» There are only 4000 possible keys.
» Each key, k, has a unique four-digit identifier that we can obtain in constant
timeask.id();

V[] map = new V[10000];

public V put (K key, V value) {
V old = mapl[k.id()];
maplk.id ()] = value;
return old; // To match the Java Map interface

}

public V get (K key) {
return map(k.id()];

}

public V remove (K key) {
V old = maplk.id()];
map(k.id()] = null;
return old;

}

Oris it?

That works, but . ..

» We always use storage for 10000 elements regardless of how many we
actually have in the map.

> We require the magic k.id ().

» To be fair, this is a problem with most Map implementations.
So, what next?

» The main block is the k. 1d () issue.

» Avoiding wasting too much space would be nice too.

» If we want constant time access we're pretty much stuck with arrays so we
have the usual static vs. dynamic tradeoff (and may need to resize
occasionally).

Dealing with the space issue

Returning to our dream world, imagine that we knew somehow that we would
never need maps for more than 30 values at a time. Why not try something like
this?

V[] map = new V[53];

public V put (K key, V value) {
V old = map[k.id() % v.length];
map(k.id() % v.length] = value;
return old; // To match the Java Map interface

}

public V get (K key) {
return map(k.id() % v.length];
}

public V remove (K key) {
V old = map[k.id() % v.length];
map[k.id() % v.length] = null;
return old;

}

What'’s the problem?

» The id of two different keys could produce the same value when we take the
remainder modulo our array size.

> So, in get we might get the value for a different key and in put we might
overwrite the value for a different key.

> We need to be able to deal with these kinds of collisions.
» And, what about the whole “magic ID” problem anyhow?

Solving the magic ID problem

» The solution to the magic ID problem is to make one up.
» A made up ID is called a hash code.

» More generally a hash function takes objects from a class as input and
produces a value from a fixed finite set of values (in Java, a int).
» What properties should a hash function have?

» |t should be very fast to compute.

» |t should be uniform — no value should be more likely to occur than any other.

» In fact, this should be true even when we take remainders modulo (any?) fixed
number.

There is still a problem

» A hash code must be dependent on the contents of the object.

» In Java, if two objects are equal (according to the equals method) then their
hash codes must be equal.

» For Objects, Java provides a default hash function that uses the memory
address of the object.

» If you create a class in Java, but don’t provide a hashCode method, the
default one will be used.

» If you provide an equals method, but not a hashCode method, then the
underlying assumption regarding equals and hashCode is violated, and
hash maps in Java will not work as expected.

» So, if you implement an equals method in a class, then you should also
implement a hashCode method.

Example hashCode functions

Java uses the following hashCode implementations:
Fora string:

hashcode = s[0]*31"(n-1) + s[1]*x31"(n-2) + ... + s[n-1]

Fora List:

int hashCode = 1;
for (E e : list)
hashCode = 31xhashCode + (e==null ? 0 : e.hashCode());

These hashCodes are almost guaranteed to be unique - different strings will have
different hash codes.
But the codes will potentially be very large, and we don’t want to create an array

that big.

Universal hash functions

> If you have a website that uses hashing for it's main functionality, then if an
adversary knows the hash function, they can create a lot of collisions and
make your website slow and/or unusable.

» Rather than a fixed hash function, we can use a random hash function.

» A universal set of hash functions, H, is a set of hash functions such that if you
pick keys k and j at random, and choose a hash function randomly from H,
then the chance of h(k) = h(j) is no more than 1/m (where mis the size of
the hash table).

A Universal hash function

» Choose a prime number p big enough that every possible key k < p, and
choose table size m < p.

> Let hyp(k) = ((ak + b) mod p) mod m.
» The parameters a and b are chosen randomly on program startup.
» Where1 <a<p-1and0<b<p-1.

Example universal hash function

» So, withp =17 and m = 6,

hs.4(8) = ((3 -8+ 4)%17)%6
= (28%17)%6
— 11%6
= 5.

» Try hy swithk=Bandk=1.
» and hy 5(8) but with p =19 and m=7,

