
Cosc 201
Algorithms and Data Structures

Lecture 17 (28/4/2025)
Hashing

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Maps and sets revisited
▶ In computer science, a map consists of a set of keys, each of which has an

associated value.
▶ So sets are a prerequisite, but also any map can be used to store a set simply

by ignoring the values for each key (or, e.g., setting it to null)
▶ The fundamental map operations are usually considered to be:

▶ put(k , v): add the mapping from k to v either by adding k if it’s not already
present, or by changing the associated value,

▶ get(k): return the value associated to k if k is present, and
▶ remove(k): remove the key k (and any associated value).

▶ We could implement a Set or Map implementation using BSTs where the cost
of each operation is O(log n).

▶ But, this requires an underlying order on keys (and presupposes the order is
relevant for e.g., inorder traversal).

▶ What if we don’t care about an order. Can we get down to (or close to) O(1)?
Worst-case? Amortised case?

2



A perfect world . . .
Let’s dream. Keys come from a class K, values from a class V
▶ There are only 4000 possible keys.
▶ Each key, k, has a unique four-digit identifier that we can obtain in constant

time as k.id();
V[] map = new V[10000];

public V put(K key, V value) {
V old = map[k.id()];
map[k.id()] = value;
return old; // To match the Java Map interface

}

public V get(K key) {
return map[k.id()];

}

public V remove(K key) {
V old = map[k.id()];
map[k.id()] = null;
return old;

}

3



Or is it?

That works, but . . .
▶ We always use storage for 10000 elements regardless of how many we

actually have in the map.
▶ We require the magic k.id().
▶ To be fair, this is a problem with most Map implementations.

So, what next?
▶ The main block is the k.id() issue.
▶ Avoiding wasting too much space would be nice too.
▶ If we want constant time access we’re pretty much stuck with arrays so we

have the usual static vs. dynamic tradeoff (and may need to resize
occasionally).

4



Dealing with the space issue
Returning to our dream world, imagine that we knew somehow that we would
never need maps for more than 30 values at a time. Why not try something like
this?

V[] map = new V[53];

public V put(K key, V value) {
V old = map[k.id() % v.length];
map[k.id() % v.length] = value;
return old; // To match the Java Map interface

}

public V get(K key) {
return map[k.id() % v.length];

}

public V remove(K key) {
V old = map[k.id() % v.length];
map[k.id() % v.length] = null;
return old;

}

5



What’s the problem?

▶ The id of two different keys could produce the same value when we take the
remainder modulo our array size.

▶ So, in get we might get the value for a different key and in put we might
overwrite the value for a different key.

▶ We need to be able to deal with these kinds of collisions.
▶ And, what about the whole “magic ID” problem anyhow?

6



Solving the magic ID problem

▶ The solution to the magic ID problem is to make one up.
▶ A made up ID is called a hash code.
▶ More generally a hash function takes objects from a class as input and

produces a value from a fixed finite set of values (in Java, a int).
▶ What properties should a hash function have?

▶ It should be very fast to compute.
▶ It should be uniform – no value should be more likely to occur than any other.
▶ In fact, this should be true even when we take remainders modulo (any?) fixed

number.

7



There is still a problem

▶ A hash code must be dependent on the contents of the object.
▶ In Java, if two objects are equal (according to the equals method) then their

hash codes must be equal.
▶ For Objects, Java provides a default hash function that uses the memory

address of the object.
▶ If you create a class in Java, but don’t provide a hashCode method, the

default one will be used.
▶ If you provide an equals method, but not a hashCode method, then the

underlying assumption regarding equals and hashCode is violated, and
hash maps in Java will not work as expected.

▶ So, if you implement an equals method in a class, then you should also
implement a hashCode method.

8



Example hashCode functions

Java uses the following hashCode implementations:
For a String:

hashcode = s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]

For a List:

int hashCode = 1;
for (E e : list)

hashCode = 31*hashCode + (e==null ? 0 : e.hashCode());

These hashCodes are almost guaranteed to be unique - different strings will have
different hash codes.
But the codes will potentially be very large, and we don’t want to create an array
that big.

9



Universal hash functions

▶ If you have a website that uses hashing for it’s main functionality, then if an
adversary knows the hash function, they can create a lot of collisions and
make your website slow and/or unusable.

▶ Rather than a fixed hash function, we can use a random hash function.
▶ A universal set of hash functions, H, is a set of hash functions such that if you

pick keys k and j at random, and choose a hash function randomly from H,
then the chance of h(k) = h(j) is no more than 1/m (where m is the size of
the hash table).

10



A Universal hash function

▶ Choose a prime number p big enough that every possible key k < p, and
choose table size m < p.

▶ Let ha,b(k) = ((ak + b) mod p) mod m.
▶ The parameters a and b are chosen randomly on program startup.
▶ Where 1 ≤ a ≤ p − 1 and 0 ≤ b ≤ p − 1.

11



Example universal hash function

▶ So, with p = 17 and m = 6,

h3,4(8) = ((3 · 8 + 4)%17)%6
= (28%17)%6
= 11%6
= 5.

▶ Try h4,5withk=8andk=1.
▶ and h4,5(8) but with p = 19 and m = 7,

12


