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The bad situation (and its fix)
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▶ The height of a node in a BST is the length of a
longest chain from it to a leaf. The tree’s height
is the height of its root.

▶ Time complexity of operations in a BST is
directly related to height.

▶ We want to keep height small, i.e., have the
tree wide and bushy.

▶ Imagine that there is a (much) longer chain in
E than elsewhere.

▶ To fix the problem, the idea is to rotate d
upwards.

▶ In this view, that makes it the root.
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Side by side
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The internal changes to the tree structure are:
▶ Change b’s right child to c.
▶ Change d ’s left child to b.
▶ Change d ’s parent to b’s current parent and make d the

appropriate child of that parent.
▶ Change b’s parent to d .



What to do and when to do it?

▶ That’s the big question!
▶ The basic idea is to modify the add and delete operations of the BST to be

(somewhat) self-balancing.
▶ That requires a rule for when a tree is “balanced enough” and strategies for

fixing problems when the rule is violated.
▶ I’m going to (briefly!) discuss three options:

▶ AVL-trees (historically important)
▶ Red-black trees (the form used in Java’s TreeMap)
▶ Treaps (a link between heaps and trees that uses the power of randomisation)

▶ Another important structure for the same purpose is the B-tree but this is not
a binary tree.
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AVL trees

▶ In an AVL-tree each node maintains some extra information: the difference
between the height of its right subtree and that of its left subtree.

▶ Balance is maintained by ensuring that at every node this value always
belongs to {−1,0,1}.

▶ What’s the least possible number of nodes in an AVL tree of height k?
▶ Basically, it’s Fibonacci again! (which grows exponentially)
▶ The size of an AVL-tree is exponential in its height, and therefore the height is

logarithmic in the size.
▶ Operations are much like the basic ones for BST’s but then we need to check

(and fix) any excess imbalance along a single path from the affected leaf node
back up to the root.

▶ For insertions, at most three rotations are required, for deletions the worst
case is O(log n).
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Red-black trees

▶ In a red-black tree each node is either red or black.
▶ There are rules:

▶ The root node is black (optional)
▶ All null nodes are considered black.
▶ A red node may not have a red child.
▶ Every path from a node to a descendant null node contains the same number

of black nodes.
▶ These guarantee that the longest path from root to null (which could

alternate red and black) is at most twice as long as the shortest path (which
could be all black).

▶ That in turn implies that the height is logarithmic in the size since the tree
must be complete to the depth of half the height.

▶ Operations that modify the tree require (worst-case) O(log n) recolourings
(and on average a constant number) and not more than three rotations.
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Treaps
▶ If we knew that items were to be added to a BST in random order then getting

a badly unbalanced situation would be possible, but highly unlikely.
▶ There’s a relationship with quicksort here – if quicksort is applied to a list in

random order (or with randomly chosen pivots) then it’s very (very) likely to
run in O(n log n) time.

▶ A treap (portmanteau of tree and heap) is designed to achieve this even if the
elements are not added in random order.

▶ The idea is when we add an element, we give it a random priority. Then, after
doing normal BST insertion we perform a series of rotations to fix the
heap-ordering issues.

▶ The net effect is that the elements look as if they were inserted in descending
order of priority. Since the priorities were randomly chosen, that means that at
any time we see a BST which “thinks” that its elements were added in random
order.
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Where’s the code?

▶ A very good question!
▶ Manipulating the underlying structure of a linked data structure can be tricky.
▶ It’s an interesting exercise, but can be tedious. Try treaps if you’re interested.
▶ In practice, in Java use a TreeSet (for sets) or TreeMap (for maps).
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