
Cosc 201
Algorithms and Data Structures

Lecture 15 (14/4/2025)
Operations on binary search trees

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Binary search tree definition

A binary search tree (BST) is a collection of nodes with one distinguished node
called the root
▶ A node contains data called a key which comes from some ordered type (e.g.,

String).
▶ Each node can have at most two children - there are two fixed slots called left

child and right child.
▶ The left child of a node and all their descendants are called the left subtree at

the node. The right subtree is defined similarly.
▶ The key values at all nodes in the left subtree of a node must be less than the

key of the node.
▶ The key value at all nodes in the right subtree of a node must be greater than

the key of the node.
▶ Duplicate keys are not permitted.

2



Notation for BST pseudo-code

If n is a node:

▶ n.key for its key,
▶ n.l and n.r for its left and right children
▶ n.p for its parent
▶ nil for a “not here” marker, e.g., n.r = nil means “n has no right child”.

3



Example BST

dog

bat

ant cat

emu

rat

moa toad

root

n

4

▶ root .p = nil
▶ root .r = n
▶ n.p = root
▶ n.key = emu
▶ n.l = nil
▶ n.r .key = rat



Searching in a BST

We want to search in a BST for a key k returning true if it is found and false if it is
not.

1: n← root
2: while n ̸= nil do
3: if n.key = k then
4: return true
5: else if n.key < k then
6: n← n.r
7: else
8: n← n.l
9: end if

10: end while
11: return false

5



Searching in a BST, recursively

We want to search in a BST for a key k returning true if it is found and false if it is
not.

The method search(k) simply calls search(k , root) where the two-parameter
version, search(k ,n) is defined by:

1: if n = nil then
2: return false
3: else if n.key = k then
4: return true
5: else if n.key < k then
6: return search(k ,n.right)
7: else
8: return search(k ,n.left)
9: end if

6



Adding to a BST
We want to add a key k to a BST returning true if it is added and false if it was
already present.

1: p ← nil, c ← root
2: while c ̸= nil do
3: p ← c
4: if p.key = k then
5: return false
6: else if p.key < k then
7: c ← p.r
8: else
9: c ← p.l

10: end if
11: end while
12: make a child node of p with value k
13: return true

7



Making a child

We want to add a child node with key k to a parent node p.

Assumption This is really what we want to do, i.e., k is not the key of p and the
position where this node will be added is currently nil.

1: c ← new(k), c.p ← p
2: if p.key < k then
3: p.r ← c
4: else
5: p.l ← c
6: end if

8



Removing from a BST

This one is a little complicated! There are some cases to consider.

▶ First find the node, c, containing the key to be removed and its parent node p.
▶ If c has no children then just replace it by nil as the (appropriate) child of its

parent.
▶ If c has only one child, d , replace it by d as the (appropriate) child of its

parent.
▶ But, if c has two children . . .
▶ A new idea – find the successor of c. That’s a node with at most one child.

Delete it (previous case) and replace c’s key by the successor’s key.

10



What’s the successor?

The successor of a node n in a BST is the leftmost descendant of its right child.

Assumption The node n has a right child which is not nil

1: c ← n.r
2: while c.l ̸= nil do
3: c ← c.l
4: end while
5: return c.

11



Traversing a BST

12

n

n.rn.l

RL

There are three different traversals we commonly
consider in a BST. They are all based on the picture to
the left.

We need to “visit” n, visit all the nodes in L and visit all
the nodes in R. The three different traversals represent
three different choices of what order to make those visits
in.

Preorder
Visit n

Traverse L
Traverse R

Inorder
Traverse L

Visit n
Traverse R

Postorder
Traverse L
Traverse R

Visit n



Traversal example

dog

bat

ant cat

emu

rat

moa tod

13

Showing the keys of the nodes
in the order visited by the three
traversals:

Preorder dog, bat, ant, cat,
emu, rat, moa, tod.

Inorder ant, bat, cat, dog,
emu, moa, rat, tod.

Postorder ant, cat, bat, moa,
tod, rat, emu, dog.



Long branches are a problem

▶ The performance bounds for all of the BST operations are linear in the length
of the longest branch.

▶ Ideally, we’d like our BST’s to look more like heaps (wide and shallow) than
long spindly branches.

▶ Unlike heaps though, the structure of a BST is out of our control – it depends
on the order in which elements are added.

▶ In particular if they are added in their natural order we’ll get one great big long
branch and the BST performance will degrade to that of a linked list.

▶ A BST in which there are no “long” branches is called balanced.
▶ So, are there mechanisms by which we can ensure balance? Can they be

implemented with limited additional overhead?

14



Is balancing even possible?

▶ In a global way, yes.
▶ Perform an in-order traversal of the whole tree and save the results to a (sorted)

array.
▶ Now repeatedly bisect the array - use the middle element as the root
▶ Recursively build the left and right subtrees from the part before the middle and

the part after.
▶ But, this hardly meets the “limited additional overhead” criterion!

▶ We need some local operation that helps to restore balance.
▶ The name of this operation is rotation.
▶ So, what’s that?

15

https://en.wikipedia.org/wiki/Tree_rotation


The bad situation (and its fix)

16

▶ Suppose that in this BST, there is a longer
chain in E than elsewhere.

▶ The idea is to rotate d upwards (to become in
this view at least the root).

▶ Which gives . . .
▶ And that’s an improvement.

b

a

A

d

c

C

e

E



Side by side

17

b

a

A

d

c

C

e

E

b

a

A

d

c

C

e

E

The internal changes to the tree structure are:
▶ Change b’s right child to point to c.
▶ Change d ’s left child to point to b.
▶ Change the link on b’s parent (not shown) that pointed to b to

point to d instead.


