
Cosc 201
Algorithms and Data Structures

Lecture 13 (7/4/2025)
Two proofs

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Proving connection and union-find

Connection and union-find
A graph, G, is connected if and only if the union-find instance formed by starting
with the vertices of G and taking the union between the endpoints of each edge
has only one group.

Actually we’ll prove something stronger.

Connection and union-find
In a graph, G there is a walk from v to w if and only if the union-find instance
formed by starting with the vertices of G and taking the union between the
endpoints of each edge v and w belong to the same group, i.e., find(v) = find(w).

2



Proving connection and union-find

Connection and union-find
A graph, G, is connected if and only if the union-find instance formed by starting
with the vertices of G and taking the union between the endpoints of each edge
has only one group.

Actually we’ll prove something stronger.

Connection and union-find
In a graph, G there is a walk from v to w if and only if the union-find instance
formed by starting with the vertices of G and taking the union between the
endpoints of each edge v and w belong to the same group, i.e., find(v) = find(w).

2



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.

▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1
belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.
▶ This is certainly true before the first union operation since find(v) = find(u)

means v = u before the first union operation.

3



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.
▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1

belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.
▶ This is certainly true before the first union operation since find(v) = find(u)

means v = u before the first union operation.

3



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.
▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1

belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.
▶ This is certainly true before the first union operation since find(v) = find(u)

means v = u before the first union operation.

3



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.
▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1

belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.
▶ This is certainly true before the first union operation since find(v) = find(u)

means v = u before the first union operation.

3



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.
▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1

belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.

▶ This is certainly true before the first union operation since find(v) = find(u)
means v = u before the first union operation.

3



The proof (I)
▶ Since we do a union along every edge, the two endpoints of any edge belong

to the same group.
▶ So, if there is a walk from v to w , say v = v0, v1, . . . , vk = w then v0 and v1

belong to the same group but so do v1 and v2 and v2 and v3. Eventually, we
conclude that v (as v0) and w (as vk ) belong to the same group.

▶ The remaining problem is to show that if v and w belong to the same group
then there must be a walk between them.

▶ To do this, we’ll show that at any point during the process of doing the union
operations and for any vertex v there is always a walk from v to any other
vertex u such that find(v) = find(u), i.e., to any other vertex in the same
group as v at that point.

▶ This will be by induction over the sequence of union operations performed.
▶ This is certainly true before the first union operation since find(v) = find(u)

means v = u before the first union operation.

3



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?
▶ Yes! Because we could already walk to x (and any vertex in its original

group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?
▶ Yes! Because we could already walk to x (and any vertex in its original

group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?
▶ Yes! Because we could already walk to x (and any vertex in its original

group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?

▶ Yes! Because we could already walk to x (and any vertex in its original
group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?
▶ Yes! Because we could already walk to x (and any vertex in its original

group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



The proof (II)

▶ Suppose the property holds and we now do our next union union(x , y) for
some edge xy of G. Does it still hold?

▶ If, previously, find(x) = find(y) then (in terms of groups) nothing has
changed, so the property we want still persists.

▶ Otherwise, the group containing x and that containing y have merged.
Suppose that v belonged to one of them (the group containing x say).

▶ Can we now walk from v to any vertex in the new group?
▶ Yes! Because we could already walk to x (and any vertex in its original

group), and now we can follow the edge from there to y and then from y to
any vertex in its original group.

▶ So, by induction, the property holds after each and every union operation
(including the last one, which is when we need it).

4



Is union-find the correct way to determine if a graph is connected?

▶ Probably not!

▶ Union-find deals with the dynamic addition of edges and analyses the
evolution of the groups that they form.

▶ If we have a static (in the sense of unchanging) graph we just don’t care
what the connectivity status is after we’ve looked at half the edges. So
union-find is probably doing too much work.

▶ To find the set of vertices, c we can reach from v by walks we just modify the
BFT a bit (see next slide).

▶ In common graphics contexts (where we are working in a graph which is a
grid) variations on this idea include the flood fill algorithm.

5

https://en.wikipedia.org/wiki/Flood_fill


Is union-find the correct way to determine if a graph is connected?

▶ Probably not!
▶ Union-find deals with the dynamic addition of edges and analyses the

evolution of the groups that they form.

▶ If we have a static (in the sense of unchanging) graph we just don’t care
what the connectivity status is after we’ve looked at half the edges. So
union-find is probably doing too much work.

▶ To find the set of vertices, c we can reach from v by walks we just modify the
BFT a bit (see next slide).

▶ In common graphics contexts (where we are working in a graph which is a
grid) variations on this idea include the flood fill algorithm.

5

https://en.wikipedia.org/wiki/Flood_fill


Is union-find the correct way to determine if a graph is connected?

▶ Probably not!
▶ Union-find deals with the dynamic addition of edges and analyses the

evolution of the groups that they form.
▶ If we have a static (in the sense of unchanging) graph we just don’t care

what the connectivity status is after we’ve looked at half the edges. So
union-find is probably doing too much work.

▶ To find the set of vertices, c we can reach from v by walks we just modify the
BFT a bit (see next slide).

▶ In common graphics contexts (where we are working in a graph which is a
grid) variations on this idea include the flood fill algorithm.

5

https://en.wikipedia.org/wiki/Flood_fill


Is union-find the correct way to determine if a graph is connected?

▶ Probably not!
▶ Union-find deals with the dynamic addition of edges and analyses the

evolution of the groups that they form.
▶ If we have a static (in the sense of unchanging) graph we just don’t care

what the connectivity status is after we’ve looked at half the edges. So
union-find is probably doing too much work.

▶ To find the set of vertices, c we can reach from v by walks we just modify the
BFT a bit (see next slide).

▶ In common graphics contexts (where we are working in a graph which is a
grid) variations on this idea include the flood fill algorithm.

5

https://en.wikipedia.org/wiki/Flood_fill


Is union-find the correct way to determine if a graph is connected?

▶ Probably not!
▶ Union-find deals with the dynamic addition of edges and analyses the

evolution of the groups that they form.
▶ If we have a static (in the sense of unchanging) graph we just don’t care

what the connectivity status is after we’ve looked at half the edges. So
union-find is probably doing too much work.

▶ To find the set of vertices, c we can reach from v by walks we just modify the
BFT a bit (see next slide).

▶ In common graphics contexts (where we are working in a graph which is a
grid) variations on this idea include the flood fill algorithm.

5

https://en.wikipedia.org/wiki/Flood_fill


BFT to find the vertices reachable from v

q: an initally empty queue.
c: an initially empty set of vertices.

1: q.addAll(v .neighbours), c.add(v)
2: while q is not empty do
3: w ← q.remove(), c.add(w)
4: for n in w .neighours do
5: if n is not in c then
6: q.add(n), c.add(n)
7: end if
8: end for
9: end while

6



Quiz question

Which of the following orderings of the vertices is a valid breadth-first traversal of
the given graph starting at node 0?

1. 0,1,2,3
2. 0,1,3,2
3. 0,3,2,1
4. 0,3,1,2

7

0

1

3

2



The weighted shortest-path algorithm works?

The data structures associated with the weighted single-source (base)
shortest-path algorithm are:

weights A map from vertices, w , to integers that represents the known
weight of the least-weight path from base to w . Vertices are sup-
posed to be added to this map in increasing order of weight.

parent A map from vertices, w , to vertices that represents the parent of w
along the least-weight path from base to w .

pq A min-priority queue of edges. The source of each edge in pq is a
vertex of known weight, and the priority of the edge is the sum of
that weight and the weight of the edge.

Our job is to analyse the process of the algorithm and see that at all times these
conditions are satisfied.

8



Initialisation

The intialisations are:

weights The weight of base is set to 0.

parent The parent of base is set to some “end of path” marker

pq Each edge with source base is added.

These are all appropriate for the algorithm (i.e., satisfy the conditions).

9



Polling the queue

When we poll the queue, we consider the target, t , of the edge removed. There
are two cases:

▶ Its weight is already known, in which case we continue.
▶ Its weight is not yet known, in which case we assign it.

We need to check that both these are appropriate actions. To do this we proceed
by induction on the number of keys in weight and add the condition that, if there
are k keys in weight then these are the k least-weight neighbours of base.

10



Known weight case

The only thing that could go wrong is if we had somehow found a better path to t
than the weight (and parent) maps recognise.

For this to happen the source, s of that edge has to have lesser weight than the
weight of t . So, that edge was added to pq before we knew the weight of t . But
then, the edge was already in pq at the time we determined the weight of t and
would have been preferred to the choice we allegedly made.

So that can’t happen and it’s safe to just continue.

11



Known weight case

The only thing that could go wrong is if we had somehow found a better path to t
than the weight (and parent) maps recognise.

For this to happen the source, s of that edge has to have lesser weight than the
weight of t . So, that edge was added to pq before we knew the weight of t . But
then, the edge was already in pq at the time we determined the weight of t and
would have been preferred to the choice we allegedly made.

So that can’t happen and it’s safe to just continue.

11



Known weight case

The only thing that could go wrong is if we had somehow found a better path to t
than the weight (and parent) maps recognise.

For this to happen the source, s of that edge has to have lesser weight than the
weight of t . So, that edge was added to pq before we knew the weight of t . But
then, the edge was already in pq at the time we determined the weight of t and
would have been preferred to the choice we allegedly made.

So that can’t happen and it’s safe to just continue.

11



Unknown weight case

We now need to convince ourselves that t is the next-closest vertex to base.

Whatever that vertex is, the path to it must consist of a path to a vertex of already
known weight plus a single edge. But, all these edges are already in pq.

The edge we’ve just removed is the one of least priority, i.e., representing the path
of least weight – which is exactly what we want!

Huzzah!

12



Unknown weight case

We now need to convince ourselves that t is the next-closest vertex to base.

Whatever that vertex is, the path to it must consist of a path to a vertex of already
known weight plus a single edge. But, all these edges are already in pq.

The edge we’ve just removed is the one of least priority, i.e., representing the path
of least weight – which is exactly what we want!

Huzzah!

12



Unknown weight case

We now need to convince ourselves that t is the next-closest vertex to base.

Whatever that vertex is, the path to it must consist of a path to a vertex of already
known weight plus a single edge. But, all these edges are already in pq.

The edge we’ve just removed is the one of least priority, i.e., representing the path
of least weight – which is exactly what we want!

Huzzah!

12



Unknown weight case

We now need to convince ourselves that t is the next-closest vertex to base.

Whatever that vertex is, the path to it must consist of a path to a vertex of already
known weight plus a single edge. But, all these edges are already in pq.

The edge we’ve just removed is the one of least priority, i.e., representing the path
of least weight – which is exactly what we want!

Huzzah!

12


