
Cosc 201
Algorithms and Data Structures

Lecture 12 (2/4/2025)
Graph Paths

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz

Paths in graphs

▶ One of the standard metaphors in graph theory is to think of the edges as
physical connections between locations represented by their endpoints.

▶ Indeed, the Seven Bridges of Königsberg problem resolved in 1736 by Euler
“laid the foundations of graph theory”.

▶ A path in a simple graph is a sequence of distinct vertices v0, v1, . . . , vk such
that every consecutive pair of them (i.e., v0 and v1, v1 and v2, . . . , vk−1 and
vk) are connected by an edge.

▶ The length of that path is k - the number of edges it uses (in particular, paths
of length 0 exist and are just vertices!)

▶ A walk is a sequence of vertices v0, v1, . . . , vk such that every consecutive
pair of them are connected by an edge. The vertices need not be distinct.

2

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Leonhard_Euler

Connectedness again
▶ A graph, G, is connected if, given any two vertices v and w of G there is a

walk from v to w .
▶ If we make a union-find instance on the vertices of G and then do a union

operation for the endpoints of every edge, then that’s equivalent to saying that
all the vertices belong to the same group (i.e., there’s a single representative)
at the end.

▶ Is it? That should probably be proven.
▶ More interesting, is it also true that if there’s a walk from v to w there’s

necessarily a path?
▶ Yes! If there is a walk, then there’s a shortest walk, and the shortest walk

must be a path.
▶ Because, if a walk contains some vertex, z, two or more times, then we can

cut out the parts between the first and last occurrences of z (replacing them
by a single occurrence) and get a shorter walk. So a shortest walk contains
no repeated vertices i.e., it’s a path.

3

Finding shortest paths

That highlights as an interesting problem:

Single-pair shortest path problem
Given a graph G and vertices v and w find a shortest path from v to w (or show
that no path exists).

More generally:

Single-source shortest path problem
Given a graph G and a vertex v find shortest paths from v to every vertex that it
can reach.

Hint: We already know how to do this!

4

Breadth-first traversal revisited

▶ The distance between two vertices is the length of the shortest path between
them.

▶ In a BFT in G from v we first add v to a queue.
▶ That’s the only vertex at distance 0 from v .
▶ Then we add all its neighbours - definitely the vertices at distance one.
▶ Then we add their neighbours unless already seen, these are clearly at

distance two!
▶ And that “obviously” persists.
▶ So we could certainly compute an array of distances – but we want paths.
▶ Let’s look at the edges xy that are used when y is added to the queue

because it’s an unseen neighbour of x .

6

Dijkstra’s shortest-path algorithm (unweighted case)

▶ Start a BFT from the source vertex v .
▶ At the moment when a vertex y is added to the queue it’s added because it’s

a neighbour of some vertex x .
▶ Record this information y .parent ← x .
▶ Stop as usual when the queue is empty (or when w is added to the queue if

you’re only interested in a path from v to w).
▶ To find the shortest path from v to (any vertex) w :

▶ If w .parent is not defined, there isn’t one.
▶ Otherwise, read backwards w , w .parent , then the parent of that vertex, . . . , until

you reach v .
▶ We’ve added a constant amount of work in the vertex-processing part of a

BFT so the complexity is still O(|V |+ |E |).

7

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Dijkstra’s shortest-path algorithm (weighted case)

▶ In most shortest-path problems the edges are weighted and/or directed and
the length (or weight) of a path is defined to be the sum of the weights of its
edges.

▶ If the weights are always positive, can we cope?
▶ What about the absolutely shortest (non-zero) path from v .
▶ It must consist of a single edge (because the weights are positive).
▶ In fact it must be the edge of least weight that starts from v .
▶ In a basic BFT its other endpoint will be one of the ones added in the first

round of additions to the queue - but we probably want to look at it next.
▶ What kind of queue allows removal based on some other criterion?
▶ We can replace the standard queue with a min-priority queue!

8

Weighted Dijkstra correctness

▶ We know the weight of the least-weight paths to some vertices (initially just
the base).

▶ We have a min-priority queue whose keys are edges representing the last
edge of a potential path. The source of that edge will always have a known
weight.

▶ The priority associated to the key is the weight of its source plus the weight of
the edge itself.

▶ When we poll the queue, the edge returned will have a target which is either:
▶ Already of known weight, in which case we just continue, or
▶ Of unknown weight, in which case we can compute and set its weight, assign its

parent, and add all the outedges from it to the queue.
▶ We will look in more detail next time.

9

