Cosc 201
Algorithms and Data Structures
Lecture 12 (2/4/2025)
Graph Paths

Brendan McCane
brendan.mccane@otago.ac.nz
And
Michael Albert

OTAGO

Tew rigo
N D

mailto:brendan.mccane@otago.ac.nz

Paths in graphs

» One of the standard metaphors in graph theory is to think of the edges as
physical connections between locations represented by their endpoints.

» Indeed, the Seven Bridges of Kénigsberg problem resolved in 1736 by Euler
“laid the foundations of graph theory”.

» A path in a simple graph is a sequence of distinct vertices vy, vy, ..., Vk such
that every consecutive pair of them (i.e., v and v4, vy and vo, ..., v,_¢ and

Vk) are connected by an edge.

» The length of that path is k - the number of edges it uses (in particular, paths
of length 0 exist and are just vertices!)

» A walk is a sequence of vertices vy, vy, ..., Vk such that every consecutive
pair of them are connected by an edge. The vertices need not be distinct.

https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg
https://en.wikipedia.org/wiki/Leonhard_Euler

Connectedness again

| 2

>

v

A graph, G, is connected if, given any two vertices v and w of G there is a
walk from v to w.

If we make a union-find instance on the vertices of G and then do a union
operation for the endpoints of every edge, then that’s equivalent to saying that
all the vertices belong to the same group (i.e., there’s a single representative)
at the end.

Is it? That should probably be proven.

More interesting, is it also true that if there’s a walk from v to w there’s
necessarily a path?

Yes! If there is a walk, then there’s a shortest walk, and the shortest walk
must be a path.

Because, if a walk contains some vertex, z, two or more times, then we can
cut out the parts between the first and last occurrences of z (replacing them
by a single occurrence) and get a shorter walk. So a shortest walk contains
no repeated vertices i.e., it's a path.

Finding shortest paths

That highlights as an interesting problem:

Given a graph G and vertices v and w find a shortest path from v to w (or show

Single-pair shortest path problem
that no path exists). J

More generally:

Given a graph G and a vertex v find shortest paths from v to every vertex that it

Single-source shortest path problem
can reach. J

Hint: We already know how to do this!

Breadth-first traversal revisited

v

The distance between two vertices is the length of the shortest path between
them.

Ina BFT in G from v we first add v to a queue.
That’s the only vertex at distance 0 from v.
Then we add all its neighbours - definitely the vertices at distance one.

vvyyypy

Then we add their neighbours unless already seen, these are clearly at
distance two!

And that “obviously” persists.
So we could certainly compute an array of distances — but we want paths.

> Let's look at the edges xy that are used when y is added to the queue
because it’s an unseen neighbour of x.

vy

Dijkstra’s shortest-path algorithm (unweighted case)

» Start a BFT from the source vertex v.

> At the moment when a vertex y is added to the queue it's added because it’s
a neighbour of some vertex x.

» Record this information y.parent < x.

» Stop as usual when the queue is empty (or when w is added to the queue if
you're only interested in a path from v to w).

» To find the shortest path from v to (any vertex) w:

> If w.parent is not defined, there isn’t one.
» Otherwise, read backwards w, w.parent, then the parent of that vertex, ..., until
you reach v.

» We've added a constant amount of work in the vertex-processing part of a
BFT so the complexity is still O(| V| + |E|).

https://en.wikipedia.org/wiki/Edsger_W._Dijkstra

Dijkstra’s shortest-path algorithm (weighted case)

>

vVvyYVYyyvyy

vy

In most shortest-path problems the edges are weighted and/or directed and
the length (or weight) of a path is defined to be the sum of the weights of its
edges.

If the weights are always positive, can we cope?

What about the absolutely shortest (non-zero) path from v.

It must consist of a single edge (because the weights are positive).
In fact it must be the edge of least weight that starts from v.

In a basic BFT its other endpoint will be one of the ones added in the first
round of additions to the queue - but we probably want to look at it next.

What kind of queue allows removal based on some other criterion?
We can replace the standard queue with a min-priority queue!

Weighted Dijkstra correctness

>

| 2

We know the weight of the least-weight paths to some vertices (initially just
the base).

We have a min-priority queue whose keys are edges representing the last
edge of a potential path. The source of that edge will always have a known
weight.

The priority associated to the key is the weight of its source plus the weight of
the edge itself.
When we poll the queue, the edge returned will have a target which is either:

» Already of known weight, in which case we just continue, or
» Of unknown weight, in which case we can compute and set its weight, assign its
parent, and add all the outedges from it to the queue.

We will look in more detail next time.

