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What is a graph?
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▶ Possibly not what you’re thinking.
▶ A graph represents a set of things, with some

relationships between pairs of them.
▶ It’s another “data concept” because there is an

enormous range of possible interpretations and
conditions, and no clear interface.

▶ We’ll be looking (mostly) at one of the simpler
interpretations. It’s actually called simple graph in
mathematics.

▶ That’s this one.
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What is a simple graph?
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▶ A simple graph (just graph for the rest of this
lecture) consists of:
▶ a set of vertices (A to H),
▶ some edges between them (there are 12, AB, AC,

etc.)
▶ The picture is just a help
▶ And, usually, the labels are just for convenience
▶ Some graphs even have names like Q3.
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https://en.wikipedia.org/wiki/Hypercube_graph


Applications of graphs

Graphs are used to model many things, including:
▶ Social networks (Facebook, LinkedIn, etc.)
▶ Road networks (Google Maps, etc.)
▶ The internet (Google, etc.)
▶ Molecular structures (drug design, etc.)
▶ Scheduling (timetables, airlines, etc.)
▶ The power grid
▶ Data communications (computer networks, cell phone networks, etc.)
▶ Scene graphs in computer graphics
▶ Neural networks
▶ Game states (chess, etc.)
▶ etc
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Graph definition and terminology

▶ A graph G is a pair (V ,E) where V is a set of vertices and E is a set of edges.
▶ An edge is a pair of vertices, e = (v ,w).
▶ We say that v and w are adjacent or neighbours if there is an edge between

them.
▶ The degree of a vertex is the number of edges incident on it.
▶ A simple graph has no self-loops (edges from a vertex to itself) and no

multiple edges (more than one edge between the same pair of vertices).
▶ A path is a sequence of distinct vertices v1, v2, . . . , vk such that (vi , vi+1) is an

edge for 1 ≤ i < k .
▶ A cycle is a path where v1 = vk .
▶ A connected graph is one where there is a path between every pair of

vertices.
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Data structures to represent simple graphs

▶ There is no single ‘best’ way to represent graphs, even just simple graphs.
▶ The kinds of questions we typically want to be able to answer quickly, are

things like:
▶ Are vertices v and w neighbours i.e., is there an edge between them?
▶ What are all the neighbours of v?

▶ The simplest way to represent a graph is to have an array of vertices, and
each vertex has a list of its neighbours.

▶ Determining if v and w are neighbours is O(degree(v)).
▶ We could also have an array of edges, and each edge is a pair of vertices (no

explicit representation of vertices).
▶ Determining if v and w are neighbours is O(|E |).
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More complex representations

▶ More efficient would be an array with an element for each vertex, and each
element of the array is a HashSet of its neighbours.

▶ If we wanted more structure/flexibility we could define a Vertex class and
use a HashMap from Vertex to HashSet<Vertex> to represent the
neighbours.

▶ And lots of other options too – so we’ll be pretty agnostic about the details
and treat the graph as an abstract data type.
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Questions we might want to answer about graphs

▶ Are two vertices connected?
▶ What is the shortest path between two vertices?
▶ What is the shortest path between a vertex and all other vertices?
▶ What groups of vertices are connected?
▶ What is the minimum connected subgraph that includes all vertices?
▶ What is the maximum flow through the graph?

We will look at some, but not all, of these questions.

9



Traversals of simple graphs
▶ In a simple graph G, given vertices v and w we say they are connected if

there is some sequence of edges that we could follow to get from v to w .
▶ Or, in a union-find instance where we put all pairs of neighbouring vertices in

the same group, v and w belong to the same group! That group is called the
connected component of v . This is the idea used in assignment 1!

▶ If we think of edges as representing interaction of some kind, then vertices in
different components don’t influence one another, so we often implicitly
assume the graph is connected i.e., has only one component.

▶ The resident of v wants to visit all the vertices in their component. How might
they do that?

▶ The wide searcher concentrates on visiting all the immediate neighbours,
then all their (unvisited) neighbours, then all theirs, . . .

▶ The deep searcher concentrates on visiting a neighbour, then one of their
neighbours, then one of theirs, . . .

▶ These strategies define the two fundamental traversals in graphs.
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Breadth-first traversal
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We want to traverse starting from v . We initialise an empty queue, q, and add a seen
marker to each vertex (or make a set of seen vertices).

1: q.add(v), v .seen← true
2: while q is not empty do
3: w ← q.remove()
4: visit(w)
5: for n in w .neighours do
6: if n.seen = false then
7: q.add(n)
8: n.seen← true
9: end if

10: end for
11: end while

▶ (1) Add the start vertex to a queue
▶ (2) While the queue is not-empty.
▶ (3) Remove from the front of the

queue.
▶ (4) Do something with the item (visit)
▶ (5-10) Look at all its neighbours and

add any unseen ones onto the queue,
marking them as seen.

▶ (11) Repeat.



Depth-first traversal

12

We want to traverse starting from v . We initialise an empty stack, s, and add a seen
marker to each vertex (or make a set of seen vertices).

1: s.push(v), v .seen← true
2: while s is not empty do
3: w ← s.pop()
4: visit(w)
5: for n in w .neighours do
6: if n.seen = false then
7: s.push(n),
8: n.seen← true
9: end if

10: end for
11: end while

▶ (1) Add the start vertex to a stack
▶ (2) While the stack is not-empty.
▶ (3) Pop off the top element of the

stack.
▶ (4) Do something with the item (visit)
▶ (5-10) Look at all its neighbours and

push any unseen ones onto the
stack, marking them as seen.

▶ (11) Repeat.



Recursive DFT

Stack-based algorithms are often more easily expressed recursively.
function RECDFT(v )

v .seen← true, visit(v )
for n in v .neighbours do

if n.seen = false then
RECDFT(n)

end if
end for

end function
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The cost of traversal
▶ In graph algorithms, we usually measure complexity both in terms of the

number of vertices, V , and the number of edges E .
▶ The two traversal algorithms are so similar that one analysis will do for both.
▶ We assume that a single push, pop, add or remove is O(1).
▶ What happens to each vertex?

▶ It occurs in some neighbour list for the first time at which point it is added to the
queue or stack, and marked as seen (6-7).

▶ Then at some future point it is removed from the stack or queue (3).
▶ That’s O(1) work per vertex, so O(V ).

▶ Where do the edges come in?
▶ The edges arise implicitly in the neighbour lists (4).
▶ Each one appears twice, once per endpoint.
▶ When one appears, it causes a constant amount of work to happen (5).
▶ That’s O(1) work per edge, so O(E).

▶ The total complexity is O(V + E).
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