
Cosc 201
Algorithms and Data Structures

Lecture 10 (26/3/2025)
Maps, sets, trees and ordered sets

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Sets

▶ A data type that we have been carefully skirting around discussing is the set.
▶ A set is just a collection of items, with no repetition allowed.
▶ The operations we want to support are:

▶ Add(x): adds an element if it’s not already present,
▶ Remove(x): removes an element if it’s present, and
▶ Contains(x): determines if the set contains an element.
▶ Some method of iterating (e.g., for-each loop) over the elements.

▶ Java defines the Set interface (along with some implementations of it).
▶ Two important data structures for sets are hash maps and binary search trees.
▶ Hash maps are useful when the set is unordered and binary search trees are

useful when the set is ordered.
▶ We’ll look at both in the coming lectures.
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Maps

▶ In computer science, a map consists of a set of keys, each of which has an
associated value

▶ So sets are a prerequisite!
▶ The fundamental map operations are usually considered to be:

▶ put(k , v): add the mapping from k to v either by adding k if it’s not already
present, or by changing the associated value,

▶ get(k): return the value associated to k if k is present, and
▶ remove(k): remove the key k .

▶ The Java Map interface specifies a lot more! So many in fact that they include
an AbstractMap class that

. . . provides a skeletal implementation of the Map interface, to minimize
the effort required to implement this interface.
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Basic set

▶ The simplest implementation of a set that I can think of would use an array (or
list) as storage.

▶ To add an element, iterate over the array to see if it’s present and if not add it
at the end

▶ To remove an element, iterate over the array to see if it’s present and if it’s
found, overwrite it with the last element.

▶ To check if an element is present . . . (we used that above).
▶ The time-complexity of all three operations is O(n) where n is the current size

of the set.
▶ We’d like to do much better.
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Ordered set

▶ In an ordered set, there is some underlying “natural” order on its elements
(e.g., dictionary order for String objects)

▶ In that context we’d also like to be able to traverse the set in order from a
given element.

▶ E.g., “list the next 100 words in the dictionary after cat”
▶ If the set is static (i.e., unchanging) this is easy:

▶ Store the elements in a sorted array
▶ Use binary search to find elements
▶ Traversal is just incrementing a counter

▶ So what are the drawbacks of using an array for the ordered set data type?
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Ordered set (array version)

▶ Storage for n elements is in a sorted array of size at least n.
▶ Search is O(log n) using binary search.
▶ Traversal is O(log n) to initialise (it amounts to a search) and then constant

time per item after that (just a counter increment).
▶ The problem is the dynamic operations:

▶ Add(x): We need to insert x if it’s not already present, so we start with a search
which is fine, but then insertion is O(n).

▶ Remove(x): Similarly, we need to find x if present, and then move everything
beyond it back over top, so also O(n).

▶ If we anticipate relatively low use of the dynamic operations we might be
happy with this.

▶ Another approach might be to maintain a main array and subsidiary add and
remove arrays and only periodically do the updates to the main array – but
this complicates things considerably!
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Among the trees

▶ A variety of data structures called trees are fundamental in computer science.
▶ We’ve already seen one in our “chains of representatives” implementations of

union-find and in our implementation of heaps.
▶ The type that’s important for an ordered set data type is called the binary

search tree.
▶ But first some generalities.
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Trees in general

▶ A tree consists of nodes.
▶ One node is distinguished and called the root.
▶ Each node, except the root, has a unique parent.
▶ Any chain that moves from a node to its parent, its grandparent,

etc. eventually winds up at the root.
▶ The children of a node are all the nodes of which it is the parent.
▶ Nodes may (and usually do) have additional data associated to them, but this

is not relevant to the structure of the tree.
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1K words (and a few more)

cat

dog ant

emu

bat rat tod

moa
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▶ cat is the root (in CS, trees are drawn
with the root at the top.)

▶ The parent of dog is cat, of rat is
emu.

▶ Some nodes have two children, one
has three (emu) and some have
none.

▶ Nodes with no children are called
leaves.



Is this tree different?

cat

ant

moa emu

bat rat tod

dog
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▶ Sometimes!
▶ We need to specify whether the order of

the children of a node matters.
▶ Trees in which the order matters (fairly

much the normal situation in CS) are
sometimes called plane trees.

▶ You just need to check on a case by case
basis.

▶ Sometimes (e.g., in the binary search
trees we’re about to see), there are even
fixed slots for the children.



Binary search trees

In a binary search tree:
▶ The node data contains (or is) a key which comes from some ordered type

(e.g., String).
▶ Each node can have at most two children - there are two fixed slots called left

child and right child.
▶ The key values at a node’s left child and all its descendants must be less than

the key of the node.
▶ The key value at a node’s right child and all its descendants must be greater

than the key of the node.
▶ We do not allow duplicate keys – if you wish to allow duplicate keys add “or

equal to” in one case above.
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Another 1K words

dog

bat

ant cat

emu

rat

moa tod

We’ll come back to these questions in a few lectures.
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The critical questions:
▶ How do we search?
▶ How do we add?
▶ How do we traverse?
▶ What do the operations cost?


