
Cosc 201
Algorithms and Data Structures

Lecture 10 (26/3/2025)
Maps, sets, trees and ordered sets

Brendan McCane
brendan.mccane@otago.ac.nz

And
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Sets

▶ A data type that we have been carefully skirting around discussing is the set.
▶ A set is just a collection of items, with no repetition allowed.
▶ The operations we want to support are:

▶ Add(x): adds an element if it’s not already present,
▶ Remove(x): removes an element if it’s present, and
▶ Contains(x): determines if the set contains an element.
▶ Some method of iterating (e.g., for-each loop) over the elements.

▶ Java defines the Set interface (along with some implementations of it).
▶ Two important data structures for sets are hash maps and binary search trees.
▶ Hash maps are useful when the set is unordered and binary search trees are

useful when the set is ordered.
▶ We’ll look at both in the coming lectures.

2

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Set.html


Maps

▶ In computer science, a map consists of a set of keys, each of which has an
associated value

▶ So sets are a prerequisite!
▶ The fundamental map operations are usually considered to be:

▶ put(k , v): add the mapping from k to v either by adding k if it’s not already
present, or by changing the associated value,

▶ get(k): return the value associated to k if k is present, and
▶ remove(k): remove the key k .

▶ The Java Map interface specifies a lot more! So many in fact that they include
an AbstractMap class that

. . . provides a skeletal implementation of the Map interface, to minimize
the effort required to implement this interface.

3

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/AbstractMap.html


Basic set

▶ The simplest implementation of a set that I can think of would use an array (or
list) as storage.

▶ To add an element, iterate over the array to see if it’s present and if not add it
at the end

▶ To remove an element, iterate over the array to see if it’s present and if it’s
found, overwrite it with the last element.

▶ To check if an element is present . . . (we used that above).
▶ The time-complexity of all three operations is O(n) where n is the current size

of the set.
▶ We’d like to do much better.

4



Ordered set

▶ In an ordered set, there is some underlying “natural” order on its elements
(e.g., dictionary order for String objects)

▶ In that context we’d also like to be able to traverse the set in order from a
given element.

▶ E.g., “list the next 100 words in the dictionary after cat”
▶ If the set is static (i.e., unchanging) this is easy:

▶ Store the elements in a sorted array
▶ Use binary search to find elements
▶ Traversal is just incrementing a counter

▶ So what are the drawbacks of using an array for the ordered set data type?

5



Ordered set (array version)

▶ Storage for n elements is in a sorted array of size at least n.
▶ Search is O(log n) using binary search.
▶ Traversal is O(log n) to initialise (it amounts to a search) and then constant

time per item after that (just a counter increment).
▶ The problem is the dynamic operations:

▶ Add(x): We need to insert x if it’s not already present, so we start with a search
which is fine, but then insertion is O(n).

▶ Remove(x): Similarly, we need to find x if present, and then move everything
beyond it back over top, so also O(n).

▶ If we anticipate relatively low use of the dynamic operations we might be
happy with this.

▶ Another approach might be to maintain a main array and subsidiary add and
remove arrays and only periodically do the updates to the main array – but
this complicates things considerably!

6



Among the trees

▶ A variety of data structures called trees are fundamental in computer science.
▶ We’ve already seen one in our “chains of representatives” implementations of

union-find and in our implementation of heaps.
▶ The type that’s important for an ordered set data type is called the binary

search tree.
▶ But first some generalities.

8



Trees in general

▶ A tree consists of nodes.
▶ One node is distinguished and called the root.
▶ Each node, except the root, has a unique parent.
▶ Any chain that moves from a node to its parent, its grandparent,

etc. eventually winds up at the root.
▶ The children of a node are all the nodes of which it is the parent.
▶ Nodes may (and usually do) have additional data associated to them, but this

is not relevant to the structure of the tree.

9



1K words (and a few more)

cat

dog ant

emu

bat rat tod

moa

10

▶ cat is the root (in CS, trees are drawn
with the root at the top.)

▶ The parent of dog is cat, of rat is
emu.

▶ Some nodes have two children, one
has three (emu) and some have
none.

▶ Nodes with no children are called
leaves.



Is this tree different?

cat

ant

moa emu

bat rat tod

dog

11

▶ Sometimes!
▶ We need to specify whether the order of

the children of a node matters.
▶ Trees in which the order matters (fairly

much the normal situation in CS) are
sometimes called plane trees.

▶ You just need to check on a case by case
basis.

▶ Sometimes (e.g., in the binary search
trees we’re about to see), there are even
fixed slots for the children.



Binary search trees

In a binary search tree:
▶ The node data contains (or is) a key which comes from some ordered type

(e.g., String).
▶ Each node can have at most two children - there are two fixed slots called left

child and right child.
▶ The key values at a node’s left child and all its descendants must be less than

the key of the node.
▶ The key value at a node’s right child and all its descendants must be greater

than the key of the node.
▶ We do not allow duplicate keys – if you wish to allow duplicate keys add “or

equal to” in one case above.

12



Another 1K words

dog

bat

ant cat

emu

rat

moa tod

We’ll come back to these questions in a few lectures.

13

The critical questions:
▶ How do we search?
▶ How do we add?
▶ How do we traverse?
▶ What do the operations cost?


