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The idea of the heap

When we are managing a priority queue, what do we want to be able to do?
▶ Access and remove the element of greatest priority.
▶ Add new elements.

The difficulty is to ensure that both operations can be performed without having to
move Θ(n) items (the problem with the sorted version) or examine Θ(n) items (the
problem with the unsorted version).

In the third union-find implementation we saw the idea of using a ranked data
structure to store at least 2k things, while keeping a rank bounded by k . Perhaps
that can help?
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Pictures help
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▶ Think of the squares as places to
put things

▶ There’s room for
15 = 23 + 22 + 21 + 1 things

▶ But the maximum distance from
bottom to top is three.

▶ What’s the guiding principle of
the organisation of data?

▶ Will it allow us to do what we
want it to do?



Removing the maximum
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▶ Every element should be greater
than its occupied children.

▶ The structure should be filled top
to bottom and left to right.

▶ How do we fix things?



Adding a new element

77

52

14

X X

49

X X

18

17

X X

63

X X

5

▶ Every element should be greater
than its occupied children.

▶ The structure should be filled top
to bottom and left to right.

▶ How do we fix things?



How deep is a heap?

▶ Each layer of the heap is twice as big as the preceding one.
▶ So layer k (counting from the root being layer 0) can hold up to 2k elements.
▶ If we have n elements to store, then certainly we can use k layers where

k = log n.
▶ In fact a heap of total depth k can store up to 2k+1 − 1 elements – a little more

than half the elements belong to the final layer.
▶ So certainly we need Θ(log n) layers.
▶ A consequence is that any algorithm that ‘walks along a branch’ in whole or in

part will have O(log n) complexity (assuming constant-time work at each spot
on the branch).
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The idea of the heap
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▶ A: Every element should be greater
than its occupied children.

▶ B: The structure should be filled top
to bottom and left to right.

▶ To remove the maximum, replace it
with the item from the last full spot
and let that sink to ensure A.

▶ To add an element put it in the next
vacant spot, then let it float up as far
as needed to ensure A.
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Pseudocode for adding an element

Assumptions: We have a valid heap, H, and a way to:
▶ access the first vacant position,
▶ set (or find) the value H.q stored in any (occupied) position q
▶ access the ‘parent’ of any given position,
▶ identify when we’re at the root,

(all in constant time). We have an item, x to add.

Outcome: Change H by adding x to it, while maintaining the heap conditions.

1: p ← first vacancy, H.p ← x
2: while p is not the root and H.parent(p) < H.p do
3: Exchange H.parent(p) and H.p
4: p ← parent(p).
5: end while
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Pseudocode for removing the maximum

Outcome: Change H by removing its maximum (i.e., root) value while maintaining
the heap conditions.

1: v ← H.root
2: Set H.root to be the value stored in the last occupied position.
3: p ← root
4: while p has children do
5: if the largest value, H.c of a child of p is greater than H.p then
6: Exchange H.c and H.p, p ← c.
7: else
8: Break
9: end if

10: end while
11: return v
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Complexity analysis

▶ According to the pseudocode above, what is the cost of the two heap
operations?

▶ Both do a constant amount of work outside a single loop.
▶ In addition, we move along the branch from an added element up to the root,

fixing any violations we find.
▶ Similarly in removing an element we move from the root down through some

branch until all violations are fixed. Note that a violation can occur only if a
node has children.

▶ So both loops traverse at most one branch of the heap and do O(log n) work.
▶ That’s the balance we wanted in using a heap for a priority queue!
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How do we store a heap?
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▶ We could use an array, or a linked
structure.

▶ A linked structure is a bit simpler, but
an array is more efficient.

▶ We will use an array.
▶ We can store the root at position 0

and its (potential) children at indices
1 and 2.

▶ The children of node 1 go in indices 3
and 4, and those of node 2 in indices
5 and 6.

▶ Can we do all the things we need to
do?



Things we need to do

Assumptions: We are using an array heap to store a heap H that (currently)
contains n elements (assume heap.length > n). A “position” is then just an
index of heap.

Access the first vacant position heap[n]
Set or find the value at position q heap[q] ...
Access the parent of any position parent(q) = (q-1)/2
The children of q 2*q + 1, 2*q+2 if less than n
Identify if q is the root q == 0
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Writing the code?

▶ It gets a bit messy (but see code sample for instance).
▶ Just use java.util.PriorityQueue

▶ But note that the items you add need to have an associated comparator
▶ The Java implementation is of a “min-queue” where the least element is

returned first.
▶ In the heap context that would mean we’d want the least element at the root

and the children of any element to be greater than (or equal to) the element.
▶ So why did I use max-heap? Because . . .
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Heap sort

▶ A max-heap allows us to present the HeapSort algorithm, a Θ(n log n)
sorting algorithm that operates in place.

▶ Basic idea:
▶ Start with an arbitrary array
▶ Using itself as a heap, add the elements one at a time until all have been added
▶ Then remove them one at a time - the largest element gets removed first and the

place where it needs to be put gets freed from the heap.
▶ It’s just magic.
▶ Watch the ‘movie’ version in the lecture video or google “heap sort animation”
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To heap or to merge?
HeapSort (HS) An in-place sorting algorithm with Θ(n log n) time complexity.
MergeSort (MS) A sorting algorithm that can require extra storage of size n/2 and

has O(n log n) complexity.

▶ MS is generally preferred to HS. Why? There’s extra storage cost and no
apparent gain.

▶ It comes down to engineering or the fine print:
▶ HS can’t take advantage of “partially sorted” data, while MS does so

automatically (hence the Θ for HS as opposed to the O for MS)
▶ Many of MS’s memory accesses are in sequential locations controlled by an

incrementing counter – this is ideal for using fast memory.
▶ On the other hand HS jumps around through the array.
▶ HS does lots of exchanges, MS does overwrites. The latter can frequently allow

for optimisations (e.g., block copies).
▶ Bottom line is that, MS is just going to run more quickly so unless memory

use is a key bottleneck there’s no reason to use HS.
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