
Cosc 201
Algorithms and Data Structures

Lecture 7 (17/3/2024)
Mergesort revisited

Brendan McCane
brendan.mccane@otago.ac.nz

and
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


What is ‘divide and conquer’?

▶ A divide and conquer algorithm working on a problem of size parameter n
works as follows:

(Pre) Break the problem apart into two or more smaller problems
whose size parameters add up to at most n,

(Rec) Solve those problems recursively,
(Post) Combine those solutions into a solution of the original problem.

▶ E.g., for quicksort
(Pre) Select the pivot and partition the array “before the pivot” and

“after the pivot” (total size n − 1),
(Rec) Sort the parts before and after the pivot,
(Post) Not required.

2



Historical and technical digression

▶ Quicksort was designed in 1959 - a time when sorting in place was important.
▶ It still has significant use when sorting elements of primitive type.
▶ Memory access can be localised and the comparisons are direct.
▶ However, those advantages are limited when sorting objects of reference type.
▶ In that case each element of the array is just a reference to where the object

really is.
▶ So there are no local access advantages.
▶ Average case for quicksort is n log n, but worst case is n2. See board demo.
▶ Can we do as well or better with some other algorithm?

3



Can we do better?

▶ Quicksort’s worst case is when the pivot is the smallest or largest element.
▶ In that case, the partitioning is as unbalanced as possible.
▶ Can we ensure that any partitioning is as balanced as possible?

4



Mergesort

▶ Mergesort is another divide and conquer algorithm for sorting arrays.
(Pre) Split the array into two pieces of nearly equal size,
(Rec) Sort the pieces,
(Post) Merge the results together.

This algorithm is trivial except for the merging step.

5



Merging

Suppose that you were given two arrays already in sorted order and asked to
produce a third one containing all the elements of the two given arrays and also in
sorted order. How would you do that?

4 6 7

2 3 6 8 9
2 3 4 6 6 7 8 9

6



So how do we merge?

Given: a and b are sorted arrays, m is an array whose size is the sum of their
sizes.

Desired Outcome: The elements of a and b have been copied into m in sorted
order.

▶ Maintain indices, ai , bi and mi of the ‘active’ location in a, b and m.
▶ If both ai and bi represent actual indices of a and b, find the one which points

to the lesser value (break ties in favour of a) copy that value into m at mi and
increment mi and whichever of ai or bi was used for the copy.

▶ Once one of ai and bi is out of range, copy the rest of the other array into the
remainder of m.

7



Merge in Java

public static int[] merge(int[] a, int[] b) {

int[] m = new int[a.length + b.length];
int ai = 0, bi = 0, mi = 0;

while (ai < a.length && bi < b.length) {
if (a[ai] <= b[bi]) m[mi++] = a[ai++];
else m[mi++] = b[bi++];

}

while (ai < a.length) m[mi++] = a[ai++];
while (bi < b.length) m[mi++] = b[bi++];

return m;
}

8



Time complexity of merge

▶ The size parameter n (total size of the input) is equal to the sum of the lengths
of a and b.

▶ There’s no obvious counter-controlled loop - indeed there are three separate
while statements, with different sorts of control.

▶ The key observation is that each time we go once through a loop (any of the
three) the parameter mi increases by one, and this parameter runs from 0 to
n − 1.

▶ Since the total number of loop bodies executed is (always exactly) n and each
involves a constant amount of work, the total time complexity is Θ(n).

9



Mergesort

Recall the definition of Mergesort:
(Pre) Split the array into two pieces of nearly equal size,
(Rec) Sort the pieces,
(Post) Merge the results together.

▶ How can we analyse its time complexity?
▶ There are no counters!
▶ We know the time complexity of the Pre and Post phases (Pre is constant,

Post is Θ(n) where n is the sum of the sizes of the pieces being merged)
▶ So

M(n) = Θ(n) + 2 × M(n/2)

11



Ignoring all the problems
I’m going to pretend that Θ(n) is literally C × n for some constant C and chase the
recurrence a bit farther.

M(n) = C × n + 2 × M(n/2)

= C × n + 2 × (C × (n/2) + 2 × M(n/4))

= C × (2n) + 4 × M(n/4)

= C × (2n) + 4 × (C × (n/4) + 2 × M(n/8))

= C × (3n) + 8 × M(n/8)

= . . . and after k applications

= C × (kn) + 2k × M(n/2k ) .

But where does it all end?
12



Where does it end?

▶ It ends when we hit a base case of the algorithm.
▶ In the simplest version this is just when we get to n/2k = 1.
▶ More generally, we might split out earlier than this, but regardless, the work

done in a base case is (bounded by) some constant, D.
▶ So, if k is large enough that n/2k is a base case, we get:

M(n) = C × (kn) + 2k × D

▶ But how big is k?
▶ Certainly 2k ⩽ n so k ⩽ log(n) which gives

M(n) ⩽ C × (n log(n)) + Dn = Θ(n log(n)).

13



The master theorem

▶ There’s a Master theorem that allows one to analyse the complexity of almost
all divide and conquer situations that arise in practice.

▶ It’s a bit complicated, but for our purposes:

Theorem
In a divide and conquer algorithm where the pre- and post-processing work are
O(n) and the division is into parts of size at least cn for some constant 0 < c < 1
the total time-complexity is O(n log n) and generally Θ(n log n).

Theorem
In a divide and conquer algorithm where the pre- and post-processing work are
O(n) and the division is into parts of size c on one side, and n − c on the other
side, for some constant 1 ≤ c < n, the total time-complexity is O(n2).

14

https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

