Cosc 201
Algorithms and Data Structures
Lecture 6 (12/3/2025)
Analysing recursive algorithms

Brendan McCane
brendan.mccane@otago.ac.nz

Michael Albert

OTAGO



mailto:brendan.mccane@otago.ac.nz

Induction and recursion are linked!

» When we want to analyse the time-complexity of algorithms, particularly
recursive ones, the inductive approach is essential.

» It can even help with understanding nested loops or ones with complex
control conditions.

» The obvious way it works in the recursive case is “The time required to do the
task at size nis some basic amount of processing, often constant plus the
time required for one or more instances of the same task at smaller values”

» For recurrences like the Fibonacci example, one can give upper and lower
bounds on the time required and this can hopefully lead to a full analysis.



Basic Fibonacci recursion is bad

Consider the pseudocode:

Algorithm Fib(n)

1: if n < 1 then

2: return 1

3: end if

4: return Fib(n— 1) + Fib(n — 2)

What'’s the time-complexity?



Line by line analysis

Algorithm Fib(n)

1: if n < 1 then
2: return 1
3: end if
4: return Fib(n — 1) + Fib(n — 2)

> Line 1, always executed, some constant cost.
» Line 2, executed if n < 1, some constant cost.

» Line 4, executed if n > 1, cost equal to cost of calling Fib(n — 1), calling
Fib(n — 2), and some constant cost for the addition and return.



Cost bounds

If we let T(n) denote the time required for evaluating Fib(n) using this algorithm,
this analysis gives:

T(0)=T(1)=C
T(n)=D+T(n—1)+ T(n-2)
where C and D are some positive constants.

» This certainly shows that T(n) grows at least as quickly as Fib(n).
» Evenif we had D =0 we'd get T(n) = C x Fib(n).

» In fact, the growth rates are the same — but all we really care about is that this
is exponential and hence far too slow for larger values of n.

Moral: A recursive algorithm that makes two or more recursive calls with

parameter values that are close to the original will generally have exponential time
complexity.



Fixing Fibonacci

Let’s adjust the pseudocode. We're thinking of FibPair(n) as returning the pair of
numbers (f,_1, fy).

Algorithm FibPair(n)

1: if n=1 then

2 return (1, 1)

3: end if

4: (a, b) < FibPair(n—1)
5: return (b, a+ b)

Now, what'’s the time-complexity?



Line by line analysis

Algorithm FibPair(n)

1: if n=1 then

2 return (1, 1)

3: end if

4: (a, b) < FibPair(n—1)
5: return (b, a+ b)

» Line 1, always executed, some constant cost.
» Line 2, executed if n = 1, some constant cost.
> Line 4, executed if n > 1, cost equal to cost of calling FibPair(n — 1).
» Line 5, executed if n > 1, some constant cost.



Cost bounds

If we let P(n) denote the time required for evaluating FibPair(n) using this
algorithm, this analysis gives:
P(1)=C
P(n)=P(n—1)+D
where C and D are some positive constants.

Claim
P(ny)=C+Dx(n—1)




Proof of claim

By induction of course!
It's true for n = 1 since,
P(1)=2C (definition of left hand side)
C+Dx(1—-1)=C (computation of right hand side)

Suppose that it’s true for n — 1. Then it’s true for n as well because:

P(n)=P(n—1)+D
=C+Dx(n-2)+D
=C+Dx(n-1)

By induction, it’s true for all n > 1.



Cost bounds

If we let P(n) denote the time required for evaluating FibPair(n) using this
algorithm, this analysis gives:

P(1)=C
P(ny=P(n—-1)+D
where C and D are some positive constants.
Theorem

P(n)=C+Dx(n—-1)
In particular, P(n) = ©(n).

Moral: A recursive algorithm that makes one recursive call with a smaller
parameter value and a constant amount of additional work will have at most linear
time complexity.



Correctness

How do we know that FibPair(n) actually produces the pair (f,_1, f)?
By induction again of course!
It's true for n = 1 by design.
If it's true at n — 1 then the result of computing FibPair(n) is:
(fr—1, o2 + fn_1) = (fa=1, fn)

which is exactly what we want.



Correctness of recursive algorithms by induction

How do we know that recursive algorithms work correctly?
Because of induction!

»
>
» Find a (positive integer) parameter that gets smaller in all recursive calls.
>

Prove inductively that “for all values of the parameter, the result computed is
correct”. To do that:
» Check correctness in all non-recursive cases.
» Check correctness in recursive cases assuming correctness in the recursive
calls — that’s the inductive step.

» And then we're done.



Consider quicksort

Recall that quicksort sorts a range in an array (a group of elements between some
lower index, 1o inclusive and some upper index hi exclusive) as follows:

» If the length of the range (hi - 1o0) is at most 1 do nothing.

» Otherwise, choose a pivot element p (e.g., the element at position 10) and:

» place all the items less than p in positions 1010 1o + r

> place all the items greater than or equal to p in positions 1o + r + 1tohi
» place p in position 1o + ¢

» call quicksort on the ranges 10t0 1o + r and lo+r+1 to hi.

Can we be confident that works?



Quicksort works

» The parameteris justhi - 1o, i.e., the number of elements in the range.

» This parameter gets smaller in all recursive calls because we always remove
the element p so, even if it is the largest or smallest element of the range, the
recursive call has a range of size at mosthi - 1o - 1.

» The non-recursive case is correct because if we have 1 or fewer elements in a
range they are already sorted.

> In the recursive case, since all the elements before p are smaller than it and
we assume they get sorted correctly by quicksort, and the same happens for
the elements larger than p, we will get a correctly sorted array.



Divide and conquer

v

Quicksort is a divide and conquer algorithm.
“Large” problems are broken into smaller chunks that are handled recursively.

Pre- and/or post-processing then converts those solutions into a solution of
the large problem.

What about our “two recursive calls is bad” moral?

It doesn’t apply here because the sum of the sizes of the “chunks” is at most
the size of the original problem.

How this affects time-complexity is a bit subtle - we’ll address it next time as
we consider mergesort.



