
Cosc 201
Algorithms and Data Structures

Lecture 6 (12/3/2025)
Analysing recursive algorithms

Brendan McCane
brendan.mccane@otago.ac.nz

Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Induction and recursion are linked!

▶ When we want to analyse the time-complexity of algorithms, particularly
recursive ones, the inductive approach is essential.

▶ It can even help with understanding nested loops or ones with complex
control conditions.

▶ The obvious way it works in the recursive case is “The time required to do the
task at size n is some basic amount of processing, often constant plus the
time required for one or more instances of the same task at smaller values”

▶ For recurrences like the Fibonacci example, one can give upper and lower
bounds on the time required and this can hopefully lead to a full analysis.

2



Basic Fibonacci recursion is bad

Consider the pseudocode:

Algorithm Fib(n)
1: if n ⩽ 1 then
2: return 1
3: end if
4: return Fib(n − 1) + Fib(n − 2)

What’s the time-complexity?

3



Line by line analysis

Algorithm Fib(n)
1: if n ⩽ 1 then
2: return 1
3: end if
4: return Fib(n − 1) + Fib(n − 2)

▶ Line 1, always executed, some constant cost.
▶ Line 2, executed if n ⩽ 1, some constant cost.
▶ Line 4, executed if n > 1, cost equal to cost of calling Fib(n − 1), calling

Fib(n − 2), and some constant cost for the addition and return.

4



Cost bounds

If we let T (n) denote the time required for evaluating Fib(n) using this algorithm,
this analysis gives:

T (0) = T (1) = C
T (n) = D + T (n − 1) + T (n − 2)

where C and D are some positive constants.

▶ This certainly shows that T (n) grows at least as quickly as Fib(n).
▶ Even if we had D = 0 we’d get T (n) = C × Fib(n).
▶ In fact, the growth rates are the same – but all we really care about is that this

is exponential and hence far too slow for larger values of n.

Moral: A recursive algorithm that makes two or more recursive calls with
parameter values that are close to the original will generally have exponential time
complexity.

5



Fixing Fibonacci

Let’s adjust the pseudocode. We’re thinking of FibPair(n) as returning the pair of
numbers (fn−1, fn).

Algorithm FibPair(n)
1: if n = 1 then
2: return (1, 1)
3: end if
4: (a, b)← FibPair(n − 1)
5: return (b, a + b)

Now, what’s the time-complexity?

6



Line by line analysis

Algorithm FibPair(n)
1: if n = 1 then
2: return (1, 1)
3: end if
4: (a, b)← FibPair(n − 1)
5: return (b, a + b)

▶ Line 1, always executed, some constant cost.
▶ Line 2, executed if n = 1, some constant cost.
▶ Line 4, executed if n > 1, cost equal to cost of calling FibPair(n − 1).
▶ Line 5, executed if n > 1, some constant cost.

7



Cost bounds

If we let P(n) denote the time required for evaluating FibPair(n) using this
algorithm, this analysis gives:

P(1) = C
P(n) = P(n − 1) + D

where C and D are some positive constants.

Claim

P(n) = C + D × (n − 1)

8



Proof of claim

By induction of course!

It’s true for n = 1 since,

P(1) = C (definition of left hand side)
C + D × (1− 1) = C (computation of right hand side)

Suppose that it’s true for n − 1. Then it’s true for n as well because:

P(n) = P(n − 1) + D
= C + D × (n − 2) + D
= C + D × (n − 1)

By induction, it’s true for all n ⩾ 1.

9



Cost bounds
If we let P(n) denote the time required for evaluating FibPair(n) using this
algorithm, this analysis gives:

P(1) = C
P(n) = P(n − 1) + D

where C and D are some positive constants.

Theorem

P(n) = C + D × (n − 1)

In particular, P(n) = Θ(n).

Moral: A recursive algorithm that makes one recursive call with a smaller
parameter value and a constant amount of additional work will have at most linear
time complexity.

10



Correctness

How do we know that FibPair(n) actually produces the pair (fn−1, fn)?

By induction again of course!

It’s true for n = 1 by design.

If it’s true at n − 1 then the result of computing FibPair(n) is:

(fn−1, fn−2 + fn−1) = (fn−1, fn)

which is exactly what we want.

11



Correctness of recursive algorithms by induction

▶ How do we know that recursive algorithms work correctly?
▶ Because of induction!
▶ Find a (positive integer) parameter that gets smaller in all recursive calls.
▶ Prove inductively that “for all values of the parameter, the result computed is

correct”. To do that:
▶ Check correctness in all non-recursive cases.
▶ Check correctness in recursive cases assuming correctness in the recursive

calls – that’s the inductive step.
▶ And then we’re done.

13



Consider quicksort

Recall that quicksort sorts a range in an array (a group of elements between some
lower index, lo inclusive and some upper index hi exclusive) as follows:
▶ If the length of the range (hi - lo) is at most 1 do nothing.
▶ Otherwise, choose a pivot element p (e.g., the element at position lo) and:

▶ place all the items less than p in positions lo to lo + r
▶ place all the items greater than or equal to p in positions lo + r + 1 to hi
▶ place p in position lo + r
▶ call quicksort on the ranges lo to lo + r and lo+r+1 to hi.

Can we be confident that works?

14



Quicksort works

▶ The parameter is just hi - lo, i.e., the number of elements in the range.
▶ This parameter gets smaller in all recursive calls because we always remove

the element p so, even if it is the largest or smallest element of the range, the
recursive call has a range of size at most hi - lo - 1.

▶ The non-recursive case is correct because if we have 1 or fewer elements in a
range they are already sorted.

▶ In the recursive case, since all the elements before p are smaller than it and
we assume they get sorted correctly by quicksort, and the same happens for
the elements larger than p, we will get a correctly sorted array.

15



Divide and conquer

▶ Quicksort is a divide and conquer algorithm.
▶ “Large” problems are broken into smaller chunks that are handled recursively.
▶ Pre- and/or post-processing then converts those solutions into a solution of

the large problem.
▶ What about our “two recursive calls is bad” moral?
▶ It doesn’t apply here because the sum of the sizes of the “chunks” is at most

the size of the original problem.
▶ How this affects time-complexity is a bit subtle - we’ll address it next time as

we consider mergesort.

16


