Cosc 201 Algorithms and Data Structures Lecture 6 (12/3/2025) Analysing recursive algorithms

> Brendan McCane brendan.mccane@otago.ac.nz Michael Albert

1

Induction and recursion are linked!

- When we want to analyse the time-complexity of algorithms, particularly recursive ones, the inductive approach is essential.
- It can even help with understanding nested loops or ones with complex control conditions.
- The obvious way it works in the recursive case is "The time required to do the task at size n is some basic amount of processing, often constant plus the time required for one or more instances of the same task at smaller values"
- For recurrences like the Fibonacci example, one can give upper and lower bounds on the time required and this can hopefully lead to a full analysis.

Basic Fibonacci recursion is bad

Consider the pseudocode:

AlgorithmFib(n)1: if $n \leq 1$ then2: return 13: end if4: return Fib(n-1) + Fib(n-2)

What's the time-complexity?

Line by line analysis

Algorithm *Fib*(*n*)

- 1: **if** *n* ≤ 1 **then**
- 2: return 1
- 3: end if
- 4: return Fib(n-1) + Fib(n-2)

Line 1, always executed, some constant cost.

- Line 2, executed if $n \leq 1$, some constant cost.
- ► Line 4, executed if n > 1, cost equal to cost of calling Fib(n 1), calling Fib(n 2), and some constant cost for the addition and return.

Cost bounds

If we let T(n) denote the time required for evaluating Fib(n) using this algorithm, this analysis gives:

$$T(0) = T(1) = C$$

 $T(n) = D + T(n-1) + T(n-2)$

where *C* and *D* are some positive constants.

- This certainly shows that T(n) grows at least as quickly as Fib(n).
- Even if we had D = 0 we'd get $T(n) = C \times Fib(n)$.
- In fact, the growth rates are the same but all we really care about is that this is exponential and hence far too slow for larger values of *n*.

Moral: A recursive algorithm that makes two or more recursive calls with parameter values that are close to the original will generally have exponential time complexity.

Fixing Fibonacci

Let's adjust the pseudocode. We're thinking of *FibPair*(*n*) as returning the pair of numbers (f_{n-1}, f_n) .

Algorithm FibPair(n)
1: if $n = 1$ then
2: return (1, 1)
3: end if
4: $(a, b) \leftarrow FibPair(n-1)$
5: return $(b, a+b)$

Now, what's the time-complexity?

Line by line analysis

Algorithm FibPair(n)1: if n = 1 then 2: return (1, 1)3: end if 4: $(a, b) \leftarrow FibPair(n-1)$ 5: return (b, a+b)

- Line 1, always executed, some constant cost.
- Line 2, executed if n = 1, some constant cost.
- Line 4, executed if n > 1, cost equal to cost of calling *FibPair*(n 1).
- Line 5, executed if n > 1, some constant cost.

Cost bounds

If we let P(n) denote the time required for evaluating FibPair(n) using this algorithm, this analysis gives:

$$egin{aligned} P(1) &= C \ P(n) &= P(n-1) + D \end{aligned}$$

where *C* and *D* are some positive constants.

Claim

$$P(n) = C + D \times (n-1)$$

Proof of claim

By induction of course!

It's true for n = 1 since,

P(1) = C (definition of left hand side) $C + D \times (1 - 1) = C$ (computation of right hand side)

Suppose that it's true for n - 1. Then it's true for n as well because:

$$P(n) = P(n-1) + D$$

= C + D × (n-2) + D
= C + D × (n-1)

By induction, it's true for all $n \ge 1$.

Cost bounds

If we let P(n) denote the time required for evaluating FibPair(n) using this algorithm, this analysis gives:

$$egin{aligned} P(1) &= C \ P(n) &= P(n-1) + D \end{aligned}$$

where *C* and *D* are some positive constants.

Theorem

$$P(n) = C + D \times (n-1)$$

In particular, $P(n) = \Theta(n)$.

Moral: A recursive algorithm that makes one recursive call with a smaller parameter value and a constant amount of additional work will have at most linear time complexity.

Correctness

How do we know that *FibPair*(*n*) actually produces the pair (f_{n-1}, f_n) ?

By induction again of course!

It's true for n = 1 by design.

If it's true at n - 1 then the result of computing *FibPair*(*n*) is:

$$(f_{n-1}, f_{n-2} + f_{n-1}) = (f_{n-1}, f_n)$$

which is exactly what we want.

Correctness of recursive algorithms by induction

- How do we know that recursive algorithms work correctly?
- Because of induction!
- Find a (positive integer) *parameter* that gets smaller in all recursive calls.
- Prove inductively that "for all values of the parameter, the result computed is correct". To do that:
 - Check correctness in all non-recursive cases.
 - Check correctness in recursive cases assuming correctness in the recursive calls that's the inductive step.
- And then we're done.

Consider quicksort

Recall that quicksort sorts a range in an array (a group of elements between some lower index, 10 inclusive and some upper index hi exclusive) as follows:

- ▶ If the length of the range (hi 10) is at most 1 do nothing.
- Otherwise, choose a pivot element p (e.g., the element at position 10) and:
 - place all the items less than p in positions lo to lo + r
 - place all the items greater than or equal to p in positions lo + r + 1 to hi
 - place p in position lo + r
 - call quicksort on the ranges lo to lo + r and lo+r+1 to hi.

Can we be confident that works?

Quicksort works

- ▶ The parameter is just hi 10, i.e., the number of elements in the range.
- This parameter gets smaller in all recursive calls because we always remove the element p so, even if it is the largest or smallest element of the range, the recursive call has a range of size at most hi - lo - 1.
- The non-recursive case is correct because if we have 1 or fewer elements in a range they are already sorted.
- In the recursive case, since all the elements before p are smaller than it and we assume they get sorted correctly by quicksort, and the same happens for the elements larger than p, we will get a correctly sorted array.

Divide and conquer

- Quicksort is a *divide and conquer* algorithm.
- "Large" problems are broken into smaller chunks that are handled recursively.
- Pre- and/or post-processing then converts those solutions into a solution of the large problem.
- What about our "two recursive calls is bad" moral?
- It doesn't apply here because the sum of the sizes of the "chunks" is at most the size of the original problem.
- How this affects time-complexity is a bit subtle we'll address it next time as we consider *mergesort*.