
Cosc 201
Algorithms and Data Structures

Lecture 4 (5/3/2024)
Induction I

Brendan McCane
brendan.mccane@otago.ac.nz

and
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Recap

We found that by maintaining ‘local representatives’ we could ensure that the time
required by Union could be some constant times the time required by Find .
▶ For a representative, let its rank be the length of the longest chain of ‘local

representatives’ that reaches it.
▶ When forming a union - consider the two representatives involved. If one of

them is larger rank, make it the local (and global) representative of the other.
▶ If they are of equal rank, make the second the representative of the first.
▶ Then the maximum of the two ranks can increase only if they were equal to

begin with.

2



Recap: Java for third version of union-find

3

public void make(int n) {
reps = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {

reps[i] = i;
rank[i] = 0;

}
groups = n;

}

public int find(int x) {
while (x != reps[x]) {

x = reps[x];
}
return x;

}

public void union(int x, int y) {
rootUnion(find(x), find(y));

}

private void rootUnion(int x, int y) {
if (x == y) {
return;

}
groups--;
if (rank[x] > rank[y]) {
reps[y] = x;

} else if (rank[y] > rank[x]) {
reps[x] = y;

} else { // ranks are equal
reps[x] = y;
rank[y]++;

}
}



Minimum size of a set of rank k

Question: If a set has a representative of rank k how large must it be?
▶ For k = 0 we’re talking about a ‘bare point’, so it must have size at least 1.
▶ For k = 1 the representative must have at least one child, so its set has size

at least 2.
▶ For larger k – how did that set get formed? It must have been formed by the

union of two sets of rank k − 1. So its size must be at least twice the minimum
size of a set of rank k − 1.

▶ That gives 1, 2, 4, 8, 16 . . . – an obvious pattern.

Our first theorem
A set of rank k must contain at least 2k elements.

Now we want to prove this formally. To do that, we introduce a new technique:
induction. I want to recap the argument in detail to show how it works.

5



The ingredients

▶ Initially, every element is its own representative and every element has rank 0.
▶ When we do a union operation, if the two representatives have different ranks,

the ranks stay the same, and the one of smaller rank is assigned the one of
larger rank as its parent.

▶ When we do a union operation, if the two representatives have the same rank,
then one becomes the parent of the other, and its rank is increased by one.

6



Rank 0

The minimum (and only) size of a rank 0 representative is 1 (this happens initially).

7



Rank 1

To get a rank 1 representative, we form a union of either a rank 0 and a rank 1 set
or two rank 0 sets.

For the minimum possible size, it must be the second case, and the two rank 0
sets must each be of minimum size (1), so this gives a minimum size for a rank 1
set of 2.

8



Rank 2

To get a rank 2 representative, we form a union of either a rank 2 and a rank 0 or 1
set or two rank 1 sets.

For the minimum possible size, it must be the second case, and the two rank 1
sets must each be of minimum size (2), so this gives a minimum size for a rank 2
set of 4.

9



Rank 3

To get a rank 3 representative, we form a union of either a rank 3 and a rank 0, 1
or 2 set or two rank 2 sets.

For the minimum possible size, it must be the second case, and the two rank 2
sets must each be of minimum size (4), so this gives a minimum size for a rank 3
set of 8.

10



And so on

To get a rank k + 1 representative, we form a union of either a rank k + 1 and a
rank j set for some j < k + 1 or two rank k sets.

For the minimum possible size, it must be the second case, and the two rank k
sets must each be of minimum size, which we are assuming is 2k so this gives a
minimum size for a rank k + 1 set of

2k + 2k = 2 × 2k = 2k+1.

11



Working your PECS

The previous example was an argument by induction. Carrying out an argument
by induction happens in four phases.

▶ Preparation
▶ Execution
▶ Checking
▶ Satisfaction

12



Preparation

The preparation phase of an argument by induction looks something like this.

▶ Isolate the property that you are trying to verify and the parameter, n,
associated with it.

▶ Confirm by hand that for small values of the parameter the property is true.
▶ Convince yourself that to confirm it’s true for n = 5 it really helps to know that

it’s true for n = 4 (or for all n < 5).
▶ Pause and reflect. If you’re happy that you understand what’s going on

proceed to execution. If not, repeat some or all of the above.

13



Execution
The execution phase of an argument by induction is the most technical and
prescribed (once you’re an induction expert you can take some liberties).

It consists of four parts: a statement, verification of the base case(s), the inductive
step, and a conclusion.

▶ We will prove by induction that, for every non-negative integer n, insert
property to verify here.

▶ For n = 0, the property is true because explicit verification of this case.
▶ For any k ⩾ 0, assuming the property is true for k (or, for all j ⩽ k ), the

property is true at k + 1 because explain why we can take a step up.
▶ Therefore, by induction, the property is true for all n.

The text in black above is boilerplate that can be used in every argument by
induction. The text in red needs to be replaced on a case by case basis.

14



Checking and Satisfaction

Checking is basically debugging. The problem is there’s no compiler to find syntax
errors.
▶ Have you forgotten anything? Like the base case?
▶ Does the inductive step work from 0 to 1? Or do we need to verify a few small

cases before dropping into the inductive step.
▶ Does the inductive step really only use smaller values of the parameter?

Otherwise the argument is circular (if it uses the same value of the parameter)
or completely undefined (if it uses larger ones!)

▶ Ideally, show your argument to a peer and see if it convinces them (and don’t
let them be polite!)

▶ Go back to Execution, or possibly even Preparation if necessary.

Assuming that Checking is complete, Satisfaction can commence.

15



Execution phase for the union-find claim

(Description of algorithm omitted)

▶ We will prove by induction that, for every non-negative integer n, the minimum
possible size of a set whose representative has rank n is 2n.

▶ For n = 0, this is true because every representative of rank 0 is a single point
and 20 = 1.

▶ For any k ≥ 0, assuming this is true for all j ⩽ k , this is true at k + 1 because
to form a set whose representative has rank k + 1 we take the union of two
sets, one of whose representatives is already of rank k + 1, or two sets of
rank k. Only the latter case can produce a set of smallest possible size and
the smallest size in this case is twice the size of the smallest possible set of
rank k, that is 2 × 2k = 2k+1, as we claimed.

▶ Therefore, by induction, for all n, the minimum possible size of a set whose
representative has rank n is 2n.

16



Another example
Remember the Fibonacci numbers?

f0 = f1 = 1
fn = fn−1 + fn−2 for n > 1.

For various reasons, we’re interested in understanding how quickly they grow.
Here is a plot:

5 10 15 20

2000

4000

6000

8000

Fx

3
2
x

2x

17



Fibonacci numbers

If we plot (n, log fn) we get something that looks very much like a straight line. It
suggests that fn is somewhere in the neighbourhood of (1.6)n. Maybe we can
prove something like this:

(3/2)n ⩽ fn ⩽ 2n

18



Preparation

First we should look at the data.

n (3/2)n fn 2n

0 1 1 1
1 3/2 1 2
2 9/4 2 4
3 27/8 3 8
4 81/16 5 16
5 243/32 8 32
6 729/64 13 64

19



More preparation

What’s needed is a concrete example of an inductive step.

(3/2)5 ⩽ f5 ⩽ 25

(3/2)6 ⩽ f6 ⩽ 26

So, why can we conclude:

(3/2)7 ⩽ f7 ⩽ 27

20



Even more preparation

21

Carrying out a concrete example of an inductive step.

In a chained inequality like this it’s generally easiest to do the two halves
separately.

f7 = f6 + f5
⩾ (3/2)6 + (3/2)5

= (3/2)6 (1 + 2/3)

= (3/2)6 × (5/3)

⩾ (3/2)7 since 5/3 > 3/2.

f7 = f6 + f5
⩽ 26 + 25

= 26 (1 + 1/2)

= 26 × (3/2)

⩽ 27 since 3/2 < 2.



Execution

▶ We will prove by induction that, for every integer n ⩾ 5, (3/2)n ⩽ fn ⩽ 2n

▶ For n = 5,6, this is true because we computed the values in those cases and
checked.

▶ For any k ⩾ 6, assuming this is true for all 5 ⩽ j ⩽ k , this is true at k + 1
because repeat computations on previous slide changing all 7s, 6s and 5s, to
k + 1, k and k − 1 respectively.

▶ Therefore, by induction, for all n ⩾ 5, (3/2)n ⩽ fn ⩽ 2n

22



Checking and Satisfaction

▶ Checking is already done in this case (after all, this is a lecture)
▶ Satisfaction? I’ll let you be the judge of that but . . .
▶ There’s more to dig up from our preparatory work. The problem with the lower

bound was that it failed at n = 1. We could have fixed that by changing the
statement from (3/2)n ⩽ fn to (3/2)n−1 ⩽ fn, or (2/3)× (3/2)n ⩽ fn. If we did
that, and thought a bit more . . .

▶ We might be able to see that if φ ≈ 1.6 is the number1 that satisfies
φ+ 1/φ = φ2, then φn−1 ⩽ fn ⩽ φn and so fn = Θ(φn).

▶ Exact formulas for fn exist.

1In fact φ = (1 +
√

5)/2, called the golden ratio
23

https://en.wikipedia.org/wiki/Fibonacci_number


Isn’t this just maths?

▶ Well yes, but . . .

▶ When we want to analyse the time-complexity of algorithms, particularly
recursive ones, the inductive approach is essential.

▶ It can even help with understanding nested loops or ones with complex
control conditions.

▶ The obvious way it works in the recursive case is “The time required to do the
task at size n is some basic amount of processing, usually constant plus the
time required for one or more instances of the same task at smaller values”

▶ That gives recurrences like the Fibonacci one to give upper and lower bounds
on the time required and can hopefully lead to a full analysis.

24


