
Cosc 201
Algorithms and Data Structures

Lecture 3 (3/3/2024)
Improving Union-Find

Brendan McCane
brendan.mccane@otago.ac.nz

and
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Recap
Make(n) Make a set of n vertices with no edges between them. Represent the

set as an array reps of length n where reps[i] is the representative
of the i th element.

Union(x , y) Connect x and y by an edge (do nothing if they are already
connected by an edge)

Find(x) Find (and return) a representative of the group that x belongs to. If x
and y are in the same group then we require that Find(x) = Find(y).

Algorithm Union(x,y)
1: rx ← reps[x ]
2: for i from 0 to n − 1 do
3: if reps[i] = rx then
4: reps[i]← reps[y ]
5: end if
6: end for

2



Can we do better?

▶ For Find to work, every element needs to be able to identify their
representative.

▶ But this doesn’t have to be in one step.
▶ “Who’s your representative?”
▶ “It’s either that one, or whoever their representative is.”
▶ Then Union(x , y) can be:

▶ Find the representatives rx of x and ry of y .
▶ Make ry the representative of rx .

4



An example

5

Make(9)
Union(6,8)
Union(3,4)
Union(7,1)
Union(7,4)
Union(1,8)

0

2

5

8 6

4 3

1 7



Pseudocode for Find(x)

6

Assumptions: An array, reps, contains the immediate representatives of
the elements and x is a valid index in that array.

Outcome: Return the true representative of x by following through reps
until an element is found that is its own representative.

1: while reps[x ] ̸= x do
2: x ← reps[x ]
3: end while
4: return x

Iterative version

1: if reps[x ] = x then
2: return x
3: end if
4: return Find(reps[x ])

Recursive version



Pseudocode for Union(x , y)

Assumptions: An array, reps, contains the immediate representatives of the
elements. Find works.

Outcome: Set the new representative of x (and all the things in its set) to be the
representative of y .

1: reps[Find(x)]← Find(y)

7



Java for second version of union-find

public void make(int n) {
reps = new int[n];
for(int i = 0; i < n; i++) reps[i] = i;

}

public int find(int x) {
while (x != reps[x]) x = reps[x];
return x;

}

public void union(int x, int y) {
reps[find(x)] = find(y);

}

8



Efficiency

Good news The cost of Union is the cost of Find .
Bad news The cost of Find is now (in the worst case), O(n).

The problem is that the chain of representatives can get long. If we do Union(0,1),
then Union(0,2), then Union(0,3), etc. we get:

012345678

The challenge is to modify this approach to keep the complexity of Find under
control.

9



The idea

▶ For a representative, let its rank be the length of the longest chain of ‘local
representatives’ that reaches it.

▶ When forming a union - consider the two representatives involved. If one of
them is larger rank, make it the local (and global) representative of the other.

▶ If they are of equal rank, make the second the representative of the first.
▶ Then the maximum of the two ranks can increase only if they were equal to

begin with.

10



A modified example

11

Make(9)
Union(6,8)
Union(3,4)
Union(7,1)
Union(7,4)
Union(1,8)

0

2

4

5

3

1 7

8 6



The code

▶ The main change in the code is to add a new array called rank.
▶ This records the rank of the representative elements at any time.
▶ The union operation does a “root union” on the corresponding

representatives.
▶ In such a union, the element of larger rank retains its representative status.
▶ In case of a tie, we use the second element and increment its rank by one.

12



Java for third version of union-find

13

public void make(int n) {
reps = new int[n];
rank = new int[n];
for (int i = 0; i < n; i++) {

reps[i] = i;
rank[i] = 0;

}
groups = n;

}

public int find(int x) {
while (x != reps[x]) {

x = reps[x];
}
return x;

}

public void union(int x, int y) {
rootUnion(find(x), find(y));

}

private void rootUnion(int x, int y) {
if (x == y) {
return;

}
groups--;
if (rank[x] > rank[y]) {
reps[y] = x;

} else if (rank[y] > rank[x]) {
reps[x] = y;

} else { // ranks are equal
reps[x] = y;
rank[y]++;

}
}



The analysis

▶ The time required for a find operation is bounded by a constant times the
length of the chain of representatives that needs to be followed.

▶ The maximum length of the chain is the rank of the representative.
▶ So, how long can the chain be?
▶ Or, put another way, if the rank of the representative is k , how large must the

set be?
▶ If the minimum size of a set of rank k is n, then the maximum rank of set of

size n is k .

14



Analysis continued

▶ For k = 0 we’re talking about a ‘bare point’, so it must have size at least 1 (in
fact, exactly 1).

▶ To form a representative of rank 1 we must take the union of two sets of rank
0. So the minimum size of a set of rank 1 is 2. Since we only ever add
elements to sets, this can’t get any smaller.

▶ For larger k – how did that set get formed? It must have been formed by the
union of two sets of rank k − 1. So its size must be at least twice the minimum
size of a set of rank k − 1.

▶ In other words the minimum size of a set of rank k is 2k .
▶ Since 2k ⩽ n this gives k = O(log n) and we have a logarithmic bound on the

cost of find (and also of union).

Next time: Introducing induction which will allow us to make this argument
formally.

15


