
Cosc 201
Algorithms and Data Structures

Lecture 2 (26/2/2025)
Basic union-find

Brendan McCane
brendan.mccane@otago.ac.nz

and
Michael Albert

1

mailto:brendan.mccane@otago.ac.nz


Disjoint set example

2

0
1

2

3

4

5
6

7

8

9

10

11
▶ There are 12 (in general, n) ‘objects’ (vertices,

nodes, circles, dots . . . )
▶ Some pairs have been connected (by an edge).
▶ They form groups where two objects are in the

same group if there is a sequence of edges
between them.

▶ What are the groups in this example?



Dynamic disjoint set data type

3

0
1

2

3

4

5
6

7

8

9

10

11
Make(n) Make a set of n vertices with no edges

between them.
Union(x , y) Connect x and y by an edge (do

nothing if they are already connected
by an edge)

Find(x) Find (and return) a representative of
the group that x belongs to. If x and y
are in the same group then we require
that Find(x) = Find(y).



A basic idea

▶ Use an array to keep track of the representatives associated with each vertex
(i.e., the answer to the Find query on that vertex)

▶ Then the find method is trivial (just return the array value)
▶ How does union work?

4



Before and after

Suppose this is the ‘before’ situation:

x 0 1 2 3 4 5 6 7 8
Find(x) 4 6 2 6 4 4 6 7 4

What happens after:
▶ Union(4,5)?
▶ Union(1,5)?

5



Before and after

x 0 1 2 3 4 5 6 7 8
Find(x) 4 6 2 6 4 4 6 7 4

What happens after:
▶ Union(4,5)?

No change because Find(4) = Find(5).
▶ Union(1,5)?

Since Find(1) was 6 and Find(5) was 4 we need to change all 6’s to 4’s or
vice versa. For the sake of making a decision we’ll always change first to
second. So the new result is:

x 0 1 2 3 4 5 6 7 8
Find(x) 4 4 2 4 4 4 4 7 4

6



Union(x , y)

Assumptions: An array, reps, contains the representatives of the elements and x
and y are valid indices for that array.

Outcome: All entries of reps whose value was reps[x ] have been changed to
reps[y ]

1: rx ← reps[x ]
2: for i from 0 to n − 1 do
3: if reps[i] = rx then
4: reps[i]← reps[y ]
5: end if
6: end for

8

What’s wrong with that?



Union(x , y) in Java

public void union(int x, int y) {
int rx = find(x);
int ry = find(y);
if (rx == ry) return;
for (int i = 0; i < reps.length; i++) {

if (reps[i] == rx) {
reps[i] = ry;

}
}

}

One minor improvement is to check whether there is no need for a union – which
avoids the loop in that case. Also, for readability, a call to find is used rather than
just rx = reps[x].

9



What do the operations cost?

▶ Remember (from COMP162) that when we are thinking about the cost of
operations we consider only the worst case, and we ignore (multiplicative)
constants.

▶ We also like to ignore small terms, since they have even less effect than
multiplying by a constant does.

▶ Big-O notation captures upper bounds on the cost of an algorithm/method in
terms of a measure (almost universally denoted n) of the size of the input.

▶ We’re going to introduce a new player, that gives a bit more precision and
avoids having to say things like “best possible O-estimate”.

10



Introducing big-Θ
Recall the definition of f (n) = O(g(n)) :

f (n) = O(g(n)) if there is some constant A > 0 such that for all sufficiently large n,

f (n) ⩽ A× g(n).

The definition of f (n) = Θ(g(n)) is similar:

f (n) = Θ(g(n)) if there are constants 0 < B < A such that for all sufficiently large
n,

B × g(n) ⩽ f (n) ⩽ A× g(n).

That is, O says essentially that g(n) provides an upper bound for f (n) while Θ says
that it provides both a lower and an upper bound – always up to ignoring
multiplication by a constant.

11



Examples

Which of the following are true (and why)?
▶ 10n2 = Θ(n2)

▶ n2 = O(2n)

▶ n2 = Θ(2n)

▶ n2 = Θ(10n2 + 3n)

12



Observations

▶ It’s correct to think of f (n) = Θ(g(n)) as saying f and g have similar rates of
growth.

▶ Indeed, if f (n) = Θ(g(n)) then also g(n) = Θ(f (n)).
▶ And in turn, this is the same as f (n) = O(g(n)) and g(n) = O(f (n)).
▶ Normal usage in f (n) = Θ(g(n)) is for g to be some very simple expression

while f might be more complex (or not completely known). So

10n2 + 3n = Θ(n2)

looks fine, while
n2 = Θ(10n2 + 3n)

looks odd, even though both are true.

15



And what about Union-Find?

For our basic array-based implementation the cost of the three operations is as
follows:

Operation Cost Reason

Make(n) Θ(n) Allocation and initialisation of n places in
memory takes constant time per place.

Find(x) Θ(1) Looking up a value in an array takes con-
stant time.

Union(x , y) O(n) The whole array needs to be examined to
change representatives.

Next time we will try to see if we can improve the behaviour of Union and what that
might cost us elsewhere.

16



Worst case costs for the basic implementation
Operation Cost Reason

Make(n) Θ(n) Allocation and initialisation of n places in
memory takes constant time per place.

Find(x) Θ(1) Looking up a value in an array takes con-
stant time.

Union(x , y) O(n) The whole array needs to be examined to
change representatives.

▶ Union(x , y) has constant cost if x and y are already in the same set, but has
linear cost if they are in different sets.

▶ The cost of Union is a problem because we might call it up to n − 1 times with
pairs in different sets.

▶ The total cost then will be Θ(n2) which is too much to handle cases which are
truly large. Can we do better?

17



An idea

▶ For Find to work, every element needs to be able to identify their
representative.

▶ But this doesn’t have to be in one step.
▶ “Who’s your representative?”
▶ “It’s either that one, or whoever their representative is.”
▶ Then Union(x , y) can be:

▶ Find the representatives rx of x and ry of y .
▶ Make ry the representative of rx .

▶ Remember not to try to write any code before working out some examples by
hand!

18



An example

19

Make(9)
Union(6,8)
Union(3,4)
Union(7,1)
Union(7,4)
Union(1,8)

0

2

5

8 6

4 3

1 7


