
COSC 201 Lab 6: Playing in the trees

Introduction

I’m not in general in favour of asking you to implement behaviours or methods in data
structures for which a library class exists. But, I’m going to make an exception for the
case of binary search trees as understanding the fundamental properties of those trees
and the manipulation of trees in general is such an important skill.

This lab contains a lot of material, counts double, and spans two weeks of labs (plus
you have the mid-semester break). Half-credit may be available at the judgement of the
demonstrators. Note there are some extensions at the end of this lab – while extremely
valuable and (IMNSHO) interesting, they’re not a part of the assessment per se.

Problem description

All the problems involve, or are related to, writing code to extend the provided BST.java
class that represents binary search trees of strings and demonstrating through a test file
provided that your implementations are working properly.

The height of a node in a tree is the length (in edges, i.e., links) of the longest path from
that node to a leaf node. In particular, this means that the leaf nodes have height 0, and
the root node is the highest node in the tree (perhaps a better definition or metaphor
might have been found?)

The size of a binary search tree is the total number of nodes it contains. More generally,
we could define the size of a node in a BST to be the total number of nodes in the subtree
rooted at that node.



COSC 201 Lab 6: Playing in the trees

Problems

Problems marked (P) below require programming; those marked (A) require only an-
swers.

• (P) Add a data field size to the inner Node class. Adjust the dynamic methods
add(String s) and delete(String s) (as well as the private methods they
may call) so that the size of any node in the tree is correctly maintained.

• (P) Add a method size(String s) that returns the size of the subtree rooted
at s (or 0 if s is not in the tree).

• (P) Add a data field height to the inner Node class. Adjust the dynamic methods
add(String s) and delete(String s) (as well as the private methods they
may call) so that the height of any node in the tree is correctly maintained.

• (P) Add a method height(String s) that returns the height of the node whose
key is s (or -1 if s is not in the tree).

• (P) In lecture 15, an algorithm to construct an “as balanced as possible” tree from
a sorted array of String was described (recursively: make the midpoint of the
list the root, and do the same to construct the left subtree from the things before it,
and the right subtree from the things after it). Implement that method as static
BST makeBalanced(String[] dictionary) inside the BST class.

• (A) How could you use that method to fully balance a given BST? That is, how
would you code an instance method void makeBalanced() that makes a given
BST as balanced as possible? It is generally not possible to assign to this, i.e.,
something along the line of this = BST.makeBalanced(...) is not going to
work.

• (P) Add a method next(String s) that returns the first (in alphabetical order)
string t contained in a BST that is greater than s. It should return null if there is
not such a node.

• (A) How might the code for a method private Node next(Node n) that re-
turns the next Node of a BST (i.e., the node whose key is the least key of the tree
greater than the key at the given node – which might be null) differ fundamen-
tally from the previous method? (for the purposes of increased efficiency) – in
fact, doesn’t it already exist?

Extension and reflection

• Using size and height convince yourself by means of experiment that if we
construct a BST by adding strings in random order then it tends to be quite well-



COSC 201 Lab 6: Playing in the trees

balanced. What is the expected ratio between its height and the optimal height
which would be produced by makeBalanced?

• Read up about Iterator and Iterable in Java. If t is a BST how could you
make the following code legal?

for(String s : t.between(lo, hi)) { ... }

Here lo and hi should be strings and the effect of the code should be to loop over
every string s contained in the BST that was after lo and before hi in alphabetical
order. It should not be necessary to generate the list of all such strings i.e., only
O(1) extra memory should be required. The ideas underlying the coding of a
next method as above would certainly form part of such a utility.


	Introduction
	Problem description
	Problems
	Extension and reflection

