
COSC 201 Lab 4: Shuffling along

Introduction

In looking at merge sort a fundamental operation that was used was merging two
halves of an array into a single one based on the order of the relevant elements. What if
we do that merge randomly instead? Then we’re shuffling (more specifically, perform-
ing a riffle shuffle).

In this lab you’ll implement a simple version of that shuffle and investigate how well it
works.

Problem description

Your code shuffle(int[] d) is to do the following:

• Split d into two halves (or near-halves if it has odd length)

• Merge the two halves back into d choosing randomly based on a coin-flip each
time to choose which half to merge from (so long as cards are available in both
halves).

It should be obvious that a single iteration will not result in a randomised deck. The
idea will then be to begin with a sorted deck d (where d[i] = i), repeatedly shuffle
it, and gather information about where the 0 is. How many shuffles are needed before
this is reasonably evenly distributed through the deck?

Problems

• Write the shuffle(int[] d) (shuffle once) method.

• Use it for a shuffle(int[] d, int k) method that does k shuffles.

• Collect data for various k using a starting deck of size 52 with d[i] = i about
where card 0 winds up after k shuffles.

• If the shuffling is effective, there should be little or no bias in the final position of
0, i.e., all positions should be equally likely. How large does k need to be before
this seems to be (approximately) correct?

• What would happen if we used no randomness, i.e., just alternately picked cards
from each half?

• How should we really shuffle an array so that, in one call to a method like shuffle,
we obtain every possible rearrangement of the cards with the same likelihood?


	Introduction
	Problem description
	Problems

