COSC 201 Lab 3: Young tableaux

Introduction

Arrays are the fundamental data structure of many programming languages including
Java. A clear, complete and deep understanding of their strengths and weaknesses is
a prerequisite to becoming an effective programmer. This lab is devoted to trying to
develop that strength in you — it is not directly related to any of the lectures although
one of the issues (noted below) will arise later.

In this lab we will work with some special objects called Young tableaux, which are
naturally represented as doubly indexed arrays of integers. These are very important
objects in advanced algebra and discrete mathematics, but that will not concern us —
we're just using the concept as a convenient foundation for some exercises on array
manipulation.

A Young tableau is shown below:

12

N WL DN
Ne)

The key features of a Young tableau are as follows:

¢ it consists of cells which are filled with integers, and arranged in left-justified
rOws,

* no row is longer than a preceding row,
¢ from left to right in any row, and down any column the integers are increasing,
¢ the set of integers used is {1, 2, ...,n} where n is the number of cells.

In Java, an obvious way to represent a tableau is as a doubly indexed array of integers,
i.e, int [] []. The tableau above might be represented as:

int[1([] t = {{1, 4, 5, 10, 11}, {2, 6, 8}, {3, 9, 12}, {7}};

A basic problem is that doubly indexed arrays of integers need have none of the prop-
erties that define tableaux. One of the objects of this lab is to write code that will check
when such an array really is a tableau.



https://docs.oracle.com/javase/tutorial/java/nutsandbolts/arrays.html
http://en.wikipedia.org/wiki/Young_tableau

COSC 201 Lab 3: Young tableaux

Problem description

The main objective of this lab is to write a function i sTableau which takesan int [] []
as input and returns a boolean as output, where the result is t rue if the array repre-
sents a tableau, and false otherwise. Because the defining properties of a tableau sep-
arate naturally into various individual properties, this is a good opportunity to practice
bottom up design, and some form of test driven development — building and testing
your code a piece at a time.

The conditions that a tableau must satisfy are listed above. The first is represented auto-
matically by the representation as a doubly indexed array of integers, so the main issue
is to test the remaining three conditions, noting that the third of the four conditions
splits into two parts.

Problems

There is a skeleton class TableauChecker. java provided. This includes a basic util-
ity function for St ring representations of doubly indexed arrays of integers as if they
were tableaux.

Complete the static functions to the skeleton code class which implement condition two
and the first part of condition three:

rowLengthsDecrease (int[] [] t) A method thatreturns t rue if norow is longer
than a preceding row, otherwise false.

rowValuesIncrease (int[][] t) A method that returns true if from left to right
in any row, the integers are increasing, otherwise false.

Implement each one separately, testing as you go. Your methods need not work sen-
sibly if passed a null argument, but should work properly on the empty tableau,
i.e.,

int (1[0 t = {};

which those peculiar mathematicians insist is a proper tableau (with n = 0).


http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design
http://en.wikipedia.org/wiki/Test-driven_development

COSC 201 Lab 3: Young tableaux

Complete two more static functions to the skeleton code class which implement the
second part of condition three, and condition four:

columnValuesIncrease (int[][] t) A method that returns true if from top to
bottom in any column, the integers are increasing, otherwise false.

isSetOfltoN(int[][] t) A method thatreturns true if the set of integers used is

{1,2,...,n} where n is the number of cells, otherwise false. So, for example, if
there are 10 cells the numbers would be 1,2, ..., 10 with no missing or duplicate
numbers.

Finally, use the separate methods above to complete the i sTableau method for deter-
mining whether an int [] [] represents a tableau.

Reflection and extension

¢ What is the complexity of your method for checking that the entries of the tableau
form the set {1,2,...,n}? One natural implementation is of quadratic (i.e., O(n?))
but not linear (O(n)) complexity. Can you think of a linear one — or convince
yourself that yours is?

This is related to an issue that we will begin exploring in Lecture 11 — the repre-
sentation and manipulation of sets.

* The tableauToString function works nicely if the numbers involved have
three digits or fewer including sign. Of course, for reasonably-sized actual tableaux
this is fine, but more generally if we were allow arbitrary entries (perhaps skip-
ping the 1 to n condition) things get messy. How could it be improved so that
the result is nicely aligned even if some of the numbers are quite large? That is,
how could it dynamically take into account the size of the entries in the doubly
indexed array?

* Your mathematician friend who wants to work with tableaux only now gets around
to telling you that the tableaux she is interested in are generated by a sequence of
additions of cells. Her plan is to test some conjectures about tableaux which will
involve building up millions or possibly billions of tableaux in this way. Why
is the tableau representation we have been using here not a good idea for this
project?

¢ If you look at a tableau on its side (i.e., read each column from top to bottom as
a row from left to right) you get another tableau called its conjugate. How would
you write a method that, given a tableau, returned the conjugate tableau?


http://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence
http://en.wikipedia.org/wiki/Robinson-Schensted-Knuth_correspondence

	Introduction
	Problem description
	Problems
	Reflection and extension

