
COSC 201 Lab 1: Timing practice

One of the tools that we can use to experimentally assess the efficiency of programs is
quite straightforward – just measure the actual time taken to run the program. This is
known as wall-clock time. Perhaps however this is not as simple as it seems. In this lab
you’ll work with a simple timer setup to see how this method works in practice, and to
become aware of some of the problems that can arise.

A simple timer class Timer.java is provided. This functions something like a stop-
watch - you start and stop an instance of a timer and it reports the time taken (for
convenience it also maintains a list of all the times it has recorded). The times recorded
by this class are measured in nanoseconds, i.e., one-billionths of a second and are re-
turned as long values. To obtain output that’s comprehensible to humans, you could
scale the nanosecond values by a suitable factor, for instance dividing by one million
to produce a result in milliseconds. You should implement a getTimeInMs method to
perform this function, and also a getTimeInS to compute the result in seconds (since
that’s the SI unit for time). Think carefully about what return type would be appropri-
ate and how the calculation should be done. Have a read of the rest of the Timer code
while you’re there.

Experiment 1

The skeleton outline for this experiment includes a method sumRnd(int n) is pro-
vided that returns the sum of n random double values using a simple for loop. You can
use a Timer object to record the time taken when this method is called.

1. What is the (typical) ratio between the time taken for sumRnd(1000) and
sumRnd(100). Does that make sense? What should the ratio be?

2. How large do you need to make n before the ratio between the time taken for
sumRnd(10*n) and sumRnd(n) approaches what it should be?

3. When you reach that point, how much total time (roughly) is being used?

4. What does this say about the design of wall-clock experiments to test efficiency?

Experiment 2

This experiment illustrates some odd behaviour of string construction in Java. A com-
mon situation that arises in many programs is that a long string (e.g., the content of a
log file) is gradually put together from individual pieces.

The skeleton outline for this experiment includes three methods for constructing a ran-
dom string of n lower case letters.



COSC 201 Lab 1: Timing practice

1. Read the code for those methods - what are the differences? Which one would be
the most likely for you to write if we’d asked you to?

2. Compare the time required by the three methods for various values of n. Are
they always similar? Remember to make n large enough that significant time is
required.

3. The first method (using basic string concatenation) slows down a lot as n gets
large. Why should that be? What does it say about using string concatenation in
programs in general?

Reflection and extension

• Review the javadoc for System.nanoTime(), and java.util.Random. Both are useful
in experimentation and testing.

• In Assignment 1 you’re going to be asked to report on the timing outcomes of var-
ious experiments. To get sensible results you’ll need to perform the experiments
multiple times and then analyse the output (most likely in a spreadsheet). This
suggests a number of things to think about:

– How can you structure your experimental code so that it runs multiple times
without needing to restart it from the terminal each time?

– How could you arrange that the output is suitable for immediate copy-pasting
from the terminal into a spreadsheet?

– More ambitiously, could you set up an experimental harness that writes out-
put to a file format that can be imported directly?

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/System.html#nanoTime()
https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Random.html

	Experiment 1
	Experiment 2
	Reflection and extension

