
UNIVERSITY OF OTAGO EXAMINATIONS 2024

SCHOOL OF COMPUTING

COSC201

Algorithms and Data Structures

Semester One

(TIME ALLOWED: 3 HOURS)

Candidates should answer questions as follows:

Candidates should answer All questions

Marks are shown thus:

The total number of marks for this exam is 80

(2)

The following material is provided:

Nil

Use of calculators:

Any model of calculator provided that is battery powered, silent, truly portable
and free of communication capabilities

Candidates are permitted copies of:

No additional material

Other Instructions:

Nil

TURN OVER

This examination paper comprises 9 pages



COSC201

1. Union-find

The purpose of the union-find data structure is to maintain a dynamic set partition, i.e., a
partition of the elements {0,1,2, . . . ,n−1} into groups, that supports:

• union(x,y) which joins the groups containing x and y (if they are not already in
the same group), and

• find(x) which determines a representative element of the group that x belongs to.

The values of find(x) and find(y) must be the same whenever x and y belong to the
same group (and only then).

(a) Suppose that a union-find instance has been initialised with n = 10.

• At this point, before any calls to union have been made, what is the value of
find(6)? (1)

Now, the following calls to union are made: union(2, 5), union(7, 4),
union(6, 7), union(5,8). All of the following refer to the state of the union-
find instance at this point.

• What is the value of find(0)? (1)
• What are the possible values of find(6) (independent of the specific imple-

mentation)? (1)
• How many different values of x are there for which find(x) and find(4)

have the same value? (1)
• What is the minimum additional number of calls to union that can be made

before there is only one group, i.e., find(x) takes on the same value for all x
(give a brief justification). (1)

(b) In our first union-find implementation (UF1) an array, reps, of representatives
was maintained in such a way that the value of find(x) was just the element
reps[x].

• Why does that imply that, in UF1, the cost of a find operation is Θ(1)? (1)
• Why does that imply that, in UF1, the cost of a union operation is Θ(n)? (1)

(c) By contrast, in UF2 and UF3 the array reps maintained local representatives.

• In UF2 and UF3 how was the result find(x) computed using the local repre-
sentatives? (1)
• What change was made between the two implementations in order to reduce

the worst-case cost of find from O(n) (for UF2) to O(logn) (for UF3)? (2)

2 TURN OVER



COSC201

2. Induction

(a) What is the induction step in a proof by induction and what does it accomplish? (2)

(b) Prove by induction that for all positive integers n,

1+2+3+ · · ·+n > n2/2.

(4)

(c) Suppose that the implementation of a recursive algorithm (with input parameter a
non-negative integer n) has the following characteristics:

• The base cases include n = 0 and all operate in time at most C for some fixed
constant C.
• Each recursive case makes a single call to an instance of the algorithm with a

new parameter that is strictly less than one half of the original parameter, and
its execution time is at most time required for that call plus some other constant
D.

Prove, by induction, that, if T (m) represents the execution time for the implementa-
tion at m and n and k are any positive integers with k 6 2n, then T (k)6C+D×n.

(4)

3 TURN OVER



COSC201

3. Recursion and Dynamic Programming

The Fibonacci numbers are the sequence fn defined recursively by: f0 = 1, f1 = 1, and
fn = fn−1 + fn−2 for n > 1. The following four methods all correctly compute fn as
fibX(n) (replacing X by A, B, C or D as appropriate).

public long fibA(int n) {
long[] f = new long[n+1];
f[0] = 1; f[1] = 1;
for(int i = 2; i <= n; i++) {

f[i] = f[i-1] + f[i-2];
}
return f[n];

}

public long fibB(int n) {
long a = 1, b = 1;
for(int i = 0; i < n; i++) {

long c = a + b; a = b; b = c;
}
return a;

}

public long fibC(int n) {
if (n <= 1) return 1;
return fibC(n-1) + fibC(n-2);

}

public long fibD(int n) {
return fibPair(1,1,n);

}

private long fibPair(long a, long b, int n) {
if (n == 0) return a;
return fibPair(b, a+b, n-1);

}

Answer each of the following with a brief justification (i.e., not just ‘none’ or a list of
letters).

(a) Which (if any) of the four methods make use of recursion? (2)

(b) Which (if any) of the four methods use dynamic programming techniques? (2)

(c) Which (if any) represent divide and conquer algorithms? (2)

(d) Which (if any) require O(1) extra storage? (2)

(e) Which (if any) have run-time bounded by O(n)? (2)

4 TURN OVER



COSC201

4. Sorting

Three algorithms for sorting arrays are described briefly below.

• InsertionSort: Working from left to right, each element is inserted into the proper
position relative to itself, and all the elements to its left (i.e., of smaller index).

• QuickSort: The first element of the array is chosen as a pivot. All elements smaller
than it are placed before it, and all elements greater than or equal to it are placed
after it. Then QuickSort is applied to the elements before it, and the elements after
it.

• MergeSort: The first and second halves of the array are sorted using MergeSort.
Then the resulting arrays are merged into a single one.

Let n represent the number of elements in an array to be sorted.

(a) Are there any arrays for which InsertionSort requires Θ(n2) time? If so, what do
they look like? (1)

(b) Are there any arrays for which QuickSort requires Θ(n) time? If so, what do they
look like? (1)

(c) Are there any arrays for which MergeSort requires Θ(n2) time? If so, what do they
look like? (1)

(d) For each of the three algorithms, how much additional memory might be required
in order to sort an array of size n? (2)

(e) MergeSort is presented above as a divide and conquer recursive algorithm. Explain
briefly how it can be implemented in a bottom-up, non-recursive fashion. (3)

(f) A refined version of MergeSort called TimSort is used in Java’s library to sort arrays
of reference type. Describe two ways in which it differs from basic MergeSort. (2)

5 TURN OVER



COSC201

5. Heaps

Suppose that we have an array-based implementation Heap.java that represents a max-
heap of String elements. That is, it contains a data-field heap of type String[] and
the following conditions hold:

• The element at index 0 is the greatest (i.e. last, closest to z, etc.) in alphabetical
order of all the elements of the heap.

• The children (if any) of the element at index i are at indices 2*i+1 and 2*i+2
and are before (or equal) to it in alphabetical order.

We consider positions 0 through n−1 of the array to be occupied if the heap contains n
elements (the remaining positions, if any, are free space).

The add operation places a new element at the first unoccupied index and then adjusts its
position relative to its parent (and grandparent, etc.) until the conditions are restored.

The remove operation removes (and eventually returns) the element at position 0, by
replacing it with the element at the last occupied index and then adjusting its position
relative to its children (and grandchildren, etc.) until the conditions are restored.

(a) List (in increasing order of their index) the occupied positions of the array heap
after the following sequence of operations. (2)
Heap h = new Heap();
h.add("eel");
h.add("bat");
h.add("gnu");
h.add("kea");
h.add("cat");

(b) What is printed by the following? (2)
Heap h = new Heap();
String[] as = new String[] {"rats", "and", "bats", "and",

"alley", "cats"};
for(String a : as) h.add(a);
System.out.println(h.remove());

(c) List (in increasing order of their index) the occupied positions of the array heap
after the following sequence of operations. (3)
Heap h = new Heap();
String[] as = new String[] {"yak", "boa",
"ant", "roc", "eel", "kea"};

for(String a : as) h.add(a);
h.remove(); h.remove();

(d) How would you implement a priority queue data structure using a heap? In a priority
queue, each element consists of a value and an associated priority and we add pairs
consisting of a value and a priority, but when we remove an element all we want
back is the value of the element of greatest priority. (3)

6 TURN OVER



COSC201

6. Binary search trees

In a binary search tree (BST) of strings (for the sake of example) each node contains a
string and has at most two children (also nodes), called left child and right child. The
strings stored in the left child or any of its descendants are less than the string stored at
the node, and the strings stored in the right child or any of its descendants are greater than
the string stored at the node. Binary search trees support add, remove and find as
fundamental operations.

(a) If we construct a new binary search tree and then add elements to it from a sorted
list by first adding the middle element, then the elements on either side of that, then
the elements on either side of those and so on, what does the structure of the tree
look like? (1)

(b) The depth of a node in the tree is the number of links from it through its parent to
the root (so the root is depth 0, its children are depth 1, their children are depth 2,
and so on). If a tree has the maximum possible number of nodes at depth k must
it also have the maximum possible number of nodes at depth k− 1? Give a brief
justification of your answer. (2)

(c) The height of a tree is the maximum depth of any node in the tree. If we have a
tree of height h, explain why each of the operations can be implemented with time
complexity O(h). (2)

(d) Explain how to take the preorder traversal of a binary search tree. If we have a
binary search tree A and construct a new binary search tree, B, by adding elements
to it in the order produced by the preorder traversal of A, how, if at all, will the
structure of A and B be related? (3)

(e) In self-balancing trees, the dynamic operations (add and remove) include, as side-
effects, modification of the tree structure that maintain some level of balance. Why
is this desirable? Why don’t the library implementations generally produce fully-
balanced trees? (2)

7 TURN OVER



COSC201

7. Hashing

A collection of various String objects in Java are shown below along with their hash-
codes:

"ant" 96743
"cat" 98262
"dog" 99644
"hog" 103488
"kea" 106055
"moa" 108287
"rat" 112677
"yak" 119395

Suppose that we constructed a hash set of these elements using an underlying array of
10 buckets, choosing the index by taking the remainder of the hashcode modulo 10, and
added the elements in alphabetical order.

(a) Would any collisions occur when we add these elements to the array? If so, what is
the first addition that causes a collision? (1)

(b) Show the contents of the underlying buckets if we use chaining to deal with colli-
sions. (1)

(c) Show the contents of the underlying buckets if we use linear probing. (1)

(d) Suppose that we are using linear probing, that we remove "dog", replacing it by a
tombstone, and then add "yyy" with hashcode 120153. At what index would it be
stored? (1)

In each of the situations below, which of the Java library classes HashSet, TreeSet,
HashMap, or TreeMap would be the most appropriate representation of the data? In-
clude a brief justification (of a sentence or two in each case).

8 TURN OVER

(f) The intended application is to provide access to items in a shop in a role-playing
game. The most common use case is to require a list of all available items whose
cost lies in a particular range (i.e., to answer questions like “What can I buy for
between 100 and 150 gold pieces?”). (2)

(e) The intended application is to store a character’s inventory in a role-playing game.
Each possible item has an associated weight, and each character can only carry a
limited total weight. (2)

(g) The intended application is to store the names of all the individual characters in a
role-playing game. (2)



COSC201

8. Graphs

Pseudocode for breadth-first and depth-first traversal from a given vertex v in a graph is
given below. We will assume that the vertices have distinct String labels and that the
list of neighbours of a vertex is returned in alphabetical order.

Breadth-first Depth-first
q.add(v), v.seen← true
while q is not empty do

w← q.remove()
for n in w.neighours do

if n.seen = false then
q.add(n)
n.seen← true

end if
end for

end while

s.push(v), v.seen← true
while s is not empty do

w← s.pop()
for n in w.neighours do

if n.seen = false then
s.push(n)
n.seen← true

end if
end for

end while
Note that the only difference is the use of a queue (q) in the breadth-first case and a stack
(s) in the depth-first case. For clarity about the order: in a three vertex graph with vertices
A, B and C and edges AB and AC only, the breadth-first traversal from A in visiting order
is ABC while the depth-first traversal is ACB because C is added to the stack after B and
hence removed first.

A B

CD

E F

GH

P Q

R S

U

T

V

10

20 5 1515

10 5 50

15

5

(a) List the breadth-first traversal of the left-hand graph above, from vertex A. (1)

(b) List the depth-first traversal of the left-hand graph above, from vertex A. (1)

(c) List the breadth-first traversal of the left-hand graph above, from vertex H. (1)

(d) List the depth-first traversal of the left-hand graph above, from vertex H. (1)

(e) Using the weights shown, list the vertices and their distances from P in the right-
hand graph above in order of their distance from P. (2)

(f) In the right-hand graph above is it possible for the edge TU to belong to a minimum
spanning tree? Give a brief justification of your answer. (2)

(g) In the right-hand graph above is it possible for both edges QR and RU to belong to
a minimum spanning tree? Give a brief justification of your answer. (2)

9 END




